
Lecture 6
(Based on lectures of Pro.Prat)



The Revenue Equivalence Theorem

Direct selling mechanism:

� Probability assignment functions: chance that i
gets the object given a vector of reported values

p1 (v1; ::; vN) ; :::; pN (v1; ::; vN) ;

such that
P
i pi � 1 (the auctioneer could keep

the object).

� Cost functions: cost paid by bidder i given a
vector of reported values (he may pay even if

he does not get the object):

c1 (v1; ::; vN) ; :::; cN (v1; ::; vN) :

The cost could be negative, ie the auctioneer

pays the bidder.
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The equilibria we have considered in the four for-

mats have corresponding equilibria in direct selling

mechanisms.

1. First-Price, Dutch:

pi (v1; ::; vN) =

(
1 if vi > vj for all j 6= i
0 otherwise

)

ci (v1; ::; vN) =

(
b̂ (vi) if vi > vj for all j 6= i
0 otherwise

)
Easy to check: truth telling is an equilibrium of

this direct mechanism.

2. Second-Price, English: Same assignment func-

tion as First Price and

ci (v1; ::; vN) =

(
b̂ (vsecond) if vi > vj for all j 6= i
0 otherwise

)
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For ri 2 [0; 1], de�ne:

�pi (ri) =
Z 1
0
::
Z 1
0
pi (ri; v�i) f�i (v�i) dv�i;

�ci (ri) =
Z 1
0
::
Z 1
0
ci (ri; v�i) f�i (v�i) dv�i:

Then,

ui (ri; vi) = �pi (ri) vi � �ci (ri) :

A direct mechanism is incentive compatible if

ui (vi; vi) � ui (ri; vi) 8i8ri8vi:

Proposition 8 A direct mechanism is incentive-compatible

if and only if

1. �pi (vi) is non-decreasing in vi:

2. �ci can be written as

�ci (vi) = �ci (0) + �pi (vi) vi �
Z vi
0
�pi (x) dx:
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Sketch of Proof. For (1), take v0 < v00 and sup-
pose that �pi

�
v0
�
> �pi

�
v00
�
. Incentive compatibility

implies:

ui
�
v0; v0

�
� ui

�
v00; v0

�
;

ui
�
v00; v00

�
� ui

�
v0; v00

�
:

Sum the two inequalities

ui
�
v0; v0

�
+ ui

�
v00; v00

�
� ui

�
v00; v0

�
+ ui

�
v0; v00

�
That is

�pi
�
v0
�
v0 + �pi

�
v00
�
v00 � �pi

�
v0
�
v00 + �pi

�
v00
�
v0:

which re-writes as�
�pi
�
v00
�
� �pi

�
v0
�� �

v00 � v0
�
� 0;

which is a contradiction because v0 < v00 and �pi
�
v0
�
>

�pi
�
v00
�
:

For (2), note that incentive compatibility implies the

�rst-order condition

d

dr
ui (r; v)

����
r=v

= 0 8v:
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We have
d

dr
ui (r; v) = �p0i (r) v � �c0i (r)

Hence

�c0i (v) = �p0i (v) v 8v:
Integrating both sides

�ci (v)� �ci (0) =
expected bene�tz }| {

�pi (v) v �

rentz }| {Z v
0
�pi (x) dx;

which corresponds to (2).

To interpret (2), go back to mechanism design and
think of downward local IC constraints:

t̂i = t̂i�1+u1 (x̂i; �i)�u1 (x̂i�1; �i) for i = 1; :::; n

Hence

t̂i = u1 (x̂i; �i)� u1 (x̂i�1; �i)
+u1 (x̂i�1; �i�1)� u1 (x̂i�2; �i�1)
+:::

= u1 (x̂i; �i)

� (u1 (x̂i�1; �i)� u1 (x̂i�1; �i�1))
�:::

= u1 (x̂i; �i)�
i�1X
k=1

�
u1
�
x̂i�k; �i�k+1

�
� u1

�
x̂i�k; �i�k

��
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Theorem 9 (Revenue Equivalence) If two incentive-

compatible direct selling mechanisms have the same

probability assignment functions and every bidder

with valuation zero is indi�erent between the two

mechanisms, then the two mechanisms generate the

same expected revenue.

Proof. As the v's are independent, the expected

revenue can be written as

R

=
NX
i=1

Z 1
0
�ci (vi) fi (vi) dvi

=
NX
i=1

Z 1
0

�
�ci (0) + �pi (vi) vi �

Z vi
0
�pi (x) dx

�
fi (vi) dvi

=
NX
i=1

�ci (0) +
NX
i=1

Z 1
0

�
�pi (vi) vi �

Z vi
0
�pi (x) dx

�
fi (vi) dvi:

The revenue depends only on �ci (0) and �pi, not on

�ci (vi).

We can now add new formats to the list. See exer-

cise.
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E�ciency

The four formats have the same p.

They allocate the object to the bidder with the high-

est valuation.

E�cient.

Trade-o� between e�ciency and revenue maxima-

tion:

� The auctioneer can increase expected revenue
by setting a reserve price.

� A reserve price mis-allocates the object with

positive probability.
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Reserve Price in Second-Price
Auction

The auctioneer uses a second-price auction with re-

serve price r � 0. If all the bids are below r, the

auctioneer keeps the object (for which she has zero

utility).

Proposition 10 The optimal reserve price is strictly

greater than zero.

As before, h (v) is the density function of the second-

highest element vsecond of fv1; :::; vNg.

The expected revenue is

R2 =
Z 1
r
b̂ (v)h (v) dv + r Pr

�
vsecond < r; v�rst > r

�
= N (N � 1)

Z 1
r
v (F (v))N�2 f (v) (1� F (v)) dv

+rN (F (r))N�1 (1� F (r))
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Take derivatives:

dR2
dr

= �N (N � 1) r (F (r))N�2 f (r) (1� F (r))

+N (N � 1) r (F (r))N�2 f (r) (1� F (r))
�rN (N � 1) (F (r))N�1 f (r)
+N (F (r))N�1 (1� F (r))

and

dR2
dr

���
r

(F (r))N�1
= �rN (N � 1) f (r) +N (1� F (r))

Then

lim
r!0+

dR2
dr

���
r

(F (r))N�1
= N > 0

For r small enough, dR2dr

���
r
is positive and a higher r

increases the auctioneer's expected revenue.
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Common Values

So far, we have assumed that valuations are inde-

pently distributed.

But think of auctions for

� Oil �elds

� New issues of securities

� Spectrum (UMTS)

� Any object which could be re-sold (paintings,
cars, etc).

Values are then interdependent.
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Let us look at the most extreme case: the value is

the same for every player (but still stochastic):

v1 = ::: = vn = v

and v has density f and CDF F on [0; 1]

Buyer i observes signal yi with distribution g (yijv).
Assume that the y's are independent across buyers

conditional on v.

Restrict attention to second-price auctions.

Is the equilibrium of the game

bi (yi) = E [vjyi]? (4)

No. A buyer who bids E [xjyi] is paying too much
on average.

To see this, suppose everybody bids according to

the naive strategy in (4). If i wins, it means that

E [vjyi] = max (E [vjy1] ; :::; E [vjyn])
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equivalent to

yi = max (y1; :::; yn)

But then

E [vjy1; :::; yn] < E [vjyi]

If i had known what the others know he would have

bid less. This is the winner's curse.

In equilibrium, rational bidders are not subject to

the winner's curse because they do not use a naive

strategy.

The equilibrium strategy is the sophisticated bid

function:

~bi (yi) = E

"
vjyi; yi = max

j 6=i
yj

#
;

i.e. a buyer conditions his bid on the event his bid

is equal to the second-highest bid.

Are bidders rational? Experimental evidence (Kagel

and Levin 1986): both naive and strategic bidding.
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Information Provision and Revenue
Maximization

Should the auctioneer allow bidders to get more in-

formation about the object for sale?

Example: provide an independent expert report.

Suppose the cost of information provision is zero

Milgrom-Weber (Econometrica 1982)

Theorem 11 In symmetric environments, if the auc-

tioneer uses a �rst- or second-price auction the best

reporting policy is full disclosure.

In our example:

Suppose the auctioneer chooses between: (1) let-

ting bidders know only yi; (2) providing them with

perfect information (they learn v).

With (2), the bid is simply bi = v and each buyer

gets zero expected payo�.
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Which Format?

With common values, the Revenue Equivalence The-

orem does not hold.

It is still true that First = Dutch, but

Milgrom-Weber prove:

� English > Second Price.

Intuition: The sequential format provides more

info.

� Second Price > First Price (if bidders are risk-

neutral):

Intuition: reduce winner's curse

59



Lecture 3: Mechanism
Design

Very general setup: several players with private in-

formation, one player who can commit.

1. Principal o�ers mechanism (aka contract or in-

centive scheme)

2. Each agent accepts/rejects mechanism

3. Agents play according to mechanism

Many stages ) not a static Bayesian game

but... Revelation Principle: focus without loss of

generality on mechanisms such that:

� all agents accept
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� all agents simultaneously and truthfully reveal
their types

Main point: incomplete info + possibility to reject

) ine�ciency

Principal: benevolent government or pro�t maxi-

mizer

I + 1 players. i = 0 is the principal.

� = (�1; :::; �I) 2 �

y 2 Y : allocation (decided by principal)

y0 2 Y : default allocation

ui (y; �): utility of i

Mechanism: Mi: message space of each agent.

yM :M ! Y : allocation function.
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1. Principal announces (M;yM).

2. 8i, Agent i accepts/rejects.

3. If everybody accepts, agent i chooses �i (�i) 2
Mi.

4. The allocation is y = yM
�
f�i (�i)gi2I

�
.

62



Example: First-Price Auction

Agents: bidders with symmetrically distributed val-

uations f�igi2I

Principal: auctioneer

Allocation: Y =
�
i�; ftigi2I

�

Default allocation: y0 =
�
i� = 0; ftigi2I = 0

�
Message space = bids: Mi = [0;1)

Allocation function:

yMi (m) =

0B@ i� = argmaximi

ti =

(
0 if i 6= i�
mi if i = i�

1CA

Bayesian equilibrium (see previous lecture):

��i (�i) =
1

(F (�i))
N�1

Z �i
0
xd
�
(F (x))N�1

�
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Revelation Principle

Direct mechanism: Mi = �i. Agent i announces

�̂i. �y : �! Y .

Truthtelling : �̂i = �i.

Step 1 Given the equilibrium of a mechanism in which

some agents reject, there exists a mechanism

which has an equivalent equilibrium but in which

all agents accept.

Step 2 Given the equilibrium of a mechanism in which

all agents accept, there exists a direct mecha-

nism which has an equivalent equilibrium and

in which all agents reveal their types truthfully.

Take M , yM , �
� as given. Construct �y : � ! y

such that

�y
�
�̂
�
= yM

�
��
�
�̂
��

8�̂ 2 �:
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Then,

E��i [ui (�y (�) ; �i; ��i) j�i]
= E��i

�
ui
�
yM (�� (�)) ; �i; ��i

�
j�i
�

= max
�i2Mi

E��i
�
ui
�
yM (��1 (�1) ; ::; �i; ::; �

�
I (�I)) ; �i; ��i

�
j�i
�

� max
�̂i2�i

E��i

h
ui

�
�y
�
�1; ::; �̂i; ::; �I

�
; �i; ��i

�
j�i
i

Caveat: the Revelation Principle does not say that

the set of equilibria of the original mech is equal to

the set of equilibria of the direct mech.

Dominant strategies...
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Example (continued): First-Price Auction

Find the direct mechanism and truthful equilibrium

corresponding to the classical �rst-price auction (an

indirect mechanism).

Message space = types = valuations: Mi = �i =

[0; 1]

Allocation function: Use:

�yi

�
�̂
�

= yMi

�
��
�
�̂
��

=

0BB@
i� = argmaxi ��i

�
�̂i

�
ti =

(
0 if i 6= i�

��i

�
�̂i

�
if i = i�

1CCA

=

0BBB@
i� = argmaxi

1

(F(�̂i))
N�1

R �̂i
0
xd
�
(F (x))N�1

�
ti =

(
0 if i 6= i�

1

(F(�̂i))
N�1

R �̂i
0
xd
�
(F (x))N�1

�
if i = i�

1CCCA
=

0B@ i� = argmaxi �̂i

ti =

(
0 if i 6= i�

1

(F(�̂i))
N�1

R �̂i
0
xd
�
(F (x))N�1

�
if i = i�

1CA
The equilibrium of this direct mechanism is truthful:

each player i selects message �̂i = �i.
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For every vector of types �, the allocation is the

same as in the �rst-price auction.
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Usually, y = (x; t)

x 2 X: decision

t 2 [0;1)I : transfer

example x � t
1 price discrim. quantity, quality willingness to pay price
2 regulation cost technology income
3 income tax income ability tax
4 public good public decision preference contribution
5 auction winner willingness to pay price
6 bargaining trade preference price

1. Mussa-Rosen (1978)

2. Baron-Myerson (1982)

3. Mirrlees (1971)

4. Groves (1973)

5. Vickrey (1961)

6. Myerson-Satterthwaite (1983)
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Mechanism Design with One Agent

� Example: price discrimination with two types.

� General case.

Example

Seller: marginal cost c. Sells x to buyer at price t.

u0 = t� cx
u1 = �V (x)� t with V 0 > 0; V 00 < 0; V (0) = 0

� 2 f�L; �Hg with �L < �H and Pr [�H] = p

If the seller knew �,

t (x; �) = �V (x (�))

x (�) = argmax
x
�V (x)� cx

Let (�) =
�
x�L; x

�
H ; t

�
L = �LV

�
x�L
�
; t�H = �HV

�
x�H

��
be the full-info solution.
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If the seller does not know � and she o�ers (�), the
agent lies. When � = �H ,

�̂ = �H yields 0

�̂ = �L yields �HV (x
�
L)� �LV (x

�
L) > 0

The seller should select (xL; xH ; tL; tH) such that:

An agent with �L accepts:

�LV (xL)� tL � 0 (IRL)

An agent with �H accepts:

�HV (xH)� tH � 0 (IRH)

An agent with �L reports �̂ = �L:

�LV (xL)� tL � �LV (xH)� tH (ICL)

An agent with �H reports �̂ = �H :

�HV (xH)� tH � �HV (xL)� tL (ICH)

Step 1 If xL > xH , constraints cannot be satis�ed.

Sum ICL and ICH :

(�H � �L) (V (xH)� V (xL)) � 0
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Step 2 ICH binding ) ICL:

�L (V (xH)� V (xL)) � �H (V (xH)� V (xL))
= tH � tL

Step 3 ICH and IRL ) IRH :

�HV (xH)� tH
ICH
� �HV (xL)� tL

� �LV (xL)� tL
IRL
� 0

Step 4 In the optimal contract ICH and IRL are bind-

ing (and ICL and IRH are satis�ed). If ICH
were not binding, increase tH . If IRL were not

binding, increase tL.

Step 5 The optimal contract solves

max
t;x
(1� p) (tL � cxL) + p (tH � cxH)

subject to ICH and IRL binding:

tL = �LV (xL)

tH = �LV (xL) + �HV (xH)� �HV (xL)
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The problem is separable and rewrites as

max
xL
(1� p) (�LV (xL)� cxL)� p (�H � �L)V (xL)

+max
xH

p (�HV (xH)� cxH)

Compare with the e�cient program:

max
xL
(1�p) (�LV (xL)� cxL)+maxxH

p (�HV (xH)� cxH)

xL < x
�
L and xH = x�H .

Lessons: (1) ICH and IRL binding; (2) No distor-

tions at the top; (3) Rationing at the bottom.
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Mechanism Design with One Agent:
General Case

Let x 2 X � <, where X is a �nite set. Let

� = f�1; :::; �ng 2 <n, with respective probabili-
ties p1; :::; pn. The principal's utility is u0 (x; �)+ t.

The agent's is u1 (x; �)� t.

Let t0 = x0 = 0 be the normalized outside option

of the agent. By the Revelation Principle, the prin-

cipal's problem is

max
t;x

X
i

pi (u0 (xi; �i) + ti)

subject to

u1 (xi; �i)� ti � u1
�
xj; �i

�
� tj 8i; j(ICi;j)

t0 = x0 = 0

(j can be 0)
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Lattice Theory

A function f : <2 ! < is (strictly) supermodular if
8y00 > y0; 8z00 > z0

f(y00; z00)� f(y0; z00) � (>)f(y00; z0)� f(y0; z0):

If f is twice di�erentaible, then it is supermodular

if and only if @2f
@x@y � 0 everywhere.
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1. Implementability

A vector of quantities x = (x1; :::; xn) is imple-

mentable if there exists a t = (t1; :::; tn) such that

the IC constraints are satis�ed.

We assume

u1 is strictly supermodular in x and �. (A1)

This assumption means that the marginal willing-

ness to pay for x is increasing in the buyer's type.

Proposition 12 Under A1, x is implementable if and

only it is nondecreasing, that is, x0 � x1 � � � � �
xn.

Proof. Step 1: \Only if" part: Suppose xi < xk for

some i > k. Summing ICi;k and ICk;i yields

u1 (xk; �k)� u1 (xi; �k) � u1 (xk; �i)� u1 (xi; �i) ;

which contradicts supermodularity.
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Step 2: Suppose x0 � x1 � � � � � xn. If, for

i = 1; :::; n, every ICi;i�1 (local downward incentive-
compatibility constraint) holds as an equality, then

all IC's are satis�ed. This is shown in two steps.

First, if every ICi;i�1 holds as an equality, then, for
every k < i, ICk;i is satis�ed. To see this:

ti � tk
= (ti � ti�1) + (ti�1 � ti�2) + � � �+

�
tk+1 � tk

�
= (u1 (xi; �i)� u1 (xi�1; �i))

+ (u1 (xi�1; �i�1)� u1 (xi�2; �i�1))
+ � � �+

�
u1
�
xk+1; �k+1

�
� u1

�
xk; �k+1

��
� (u1 (xi; �k)� u1 (xi�1; �k))

+ (u1 (xi�1; �k)� u1 (xi�2; �k))
+ � � �+

�
u1
�
xk+1; �k

�
� u1 (xk; �k)

�
= u1 (xi; �k)� u1 (xk; �k) ;

where the second equality is due to the ICi;i�1 and
the inequality is supermodularity. Second, if every

ICi;i�1 holds as an equality, then, for every k < i,
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ICi;k is satis�ed. This is because:

ti � tk
= (ti � ti�1) + (ti�1 � ti�2) + � � �+

�
tk+1 � tk

�
= (u1 (xi; �i)� u1 (xi�1; �i))

+ (u1 (xi�1; �i�1)� u1 (xi�2; �i�1))
+ � � �+

�
u1
�
xk+1; �k+1

�
� u1

�
xk; �k+1

��
� (u1 (xi; �i)� u1 (xi�1; �i))

+ (u1 (xi�1; �i)� u1 (xi�2; �i))
+ � � �+

�
u1
�
xk+1; �i

�
� u1 (xk; �i)

�
= u1 (xi; �i)� u1 (xk; �i) :

Step 3: \If" part. Suppose x0 � x1 � � � � � xn

and construct a t such that every ICi;i�1 holds as
an equality. Let t�0 = 0 and, for i = 1; :::n,

t�i = t
�
i�1 + u1 (xi; �i)� u1 (xi�1; �i) :

This t satis�es all local downward IC's by constraint

as equalities, and, by Step 2, all IC's.
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2. Pro�t Maximization

Having characterized the set of quantity vectors that

can be implemented, we move to pro�t maximiza-

tion.

Proposition 13 Under A1, an optimal contract that

implements x takes the form

t�i (x) = t
�
i�1(x)+u1 (xi; �i)�u1 (xi�1; �i) for i = 1; :::; n:

Proof. Fix t and suppose the condition in the propo-

sition is not satis�ed. Start with the lowest i for

which ti < ti�1 + u1 (xi; �i) � u1 (xi�1; �i) (the
opposite inequality would violate ICi;i�1) and let
~ti = ti�1 + u1 (xi; �i) � u1 (xi�1; �i) and, for all
j > i, let ~tj = tj + ~ti � ti. Repeat this procedure
until all ICi;i�1 hold as equality. The new t is imple-
mentable by Proposition 12 and, as t is higher and

x is unchanged, yields a strictly higher pro�t.

78



With Propositions 12 and 13, the principal's prob-
lem rewrites as

max
x

X
i

pi (u0 (xi; �i) + t
�
i (x))

subject to 0 � x1 � � � � � xn
The \relaxed" version of this problem is

max
x

X
i

pi (u0 (xi; �i) + t
�
i (x))

subject to x nonnegative

The advantage of the relaxed problem is that both
the objective function and the constraint are separa-
ble in i. The problem can be split in n subproblems
that can be solved separately.

In general, the solution to the relaxed problem can
be di�erent from the solution to the full problem.
However, we can provide a condition under which
the relaxed problem always has a solution that is
nondecreasing in i. As that solution also solves the
full problem, we can focus without loss of general-
ity on the relaxed problem. Let Pi =

Pn
j=i pj and

de�ne, for every x and i,

�(x; i) = u0 (x; �i)+
Pi
pi
u1 (x; �i)�

Pi+1
pi

u1 (x; �i+1) :
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Proposition 14 Under A1, if � is supermodular in

x and i, the relaxed problem has a solution that

satis�es 0 � x1 � � � � � xn.
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Proof. First, notice thatX
i

pi (u0 (xi; �i) + t
�
i (x))

= (p1u0 (x1; �1) + p1u1 (x1; �1)� p1u1 (x0; �1))
+(p2u0 (x2; �2) + p2u1 (x1; �1)� p2u1 (x0; �1)
+p2u1 (x2; �2)� p2u1 (x1; �2))
+ � � �

= �
nX
j=1

pju1 (x0; �1)

+p1u0 (x1; �1) +
nX
j=1

pju1 (x1; �1)�
nX
j=2

pju1 (x1; �2)

+p2u0 (x2; �2) +
nX
j=2

pju1 (x2; �2)�
nX
j=2

pju1 (x2; �2)

+ � � �

= �
nX
j=1

pju1 (x0; �1) +
X
i

piu0 (xi; �i)

+
nX
i=1

Piu1 (xi; �i)�
nX
i=1

Pi+1u1 (xi; �i+1)

= �
nX
j=1

pju1 (x0; �1) +
X
i

pi�(xi; i):

Claim: Suppose that Y is a �nite subset of the real
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line and that f : Y � < ! < is supermodular.

Then, Y �(z) � argmaxy f(y; z) is nondecreasing

in z (given two �nite real sets Y 00 and Y 0 we say
that Y 00 � Y 0 if maxY 00 � maxY 0 and minY 00 �
minY 0).

Proof of the claim: Suppose that z00 > z0 but
maxY �(z00) < maxY �(z0). As Y �(z00) and Y �(z0)
are maximizers,

f(maxY �(z00); z00) � f(maxY �(z0); z00)

and

f(maxY �(z0); z0) � f(maxY �(z00); z0);

which combined with supermodularity implies

f(maxY �(z00); z00)� f(maxY �(z00); z0)
= f(maxY �(z0); z00)� f(maxY �(z0); z0):

As f(maxY �(z0); z0) � f(maxY �(z00); z0), it must
be that f(maxY �(z0); z00) � f(maxY �(z00); z00), ie,
maxY �(z0) 2 Y �(z00): a contradiction because we
had assumed maxY �(z00) < maxY �(z0). The proof
for minY �(z) is analogous.
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The problem

max
x

X
i

pi (u0 (xi; �i) + t
�
i (x))

rewrites as

max
x

X
i

pi�(xi; i) =
X
i

pimaxxi
�(xi; i):

By the claim, this problem has a nondecreasing so-

lution: x�1 � � � � � x�n. Then the solution of the
relaxed problem

max
x

X
i

pi�(xi; i)

subject to x nonnegative

is also nondecreasing in i, which means that the

monotonicity constraint of the full problem is not

binding. A solution to the relaxed problem is a so-

lution to the full problem.

Su�cient conditions for � to be supermodular can

be provided. Suppose that:

pi
Pi+1

is nondecreasing in i for i = 1; :::; n� 1

(A2)
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u0 is supermodular in x and � (A3)

u1(x; �i)� u1(x; �i+1) is supermodular in x and i
(A4)

A2 requires that the hazard rate be nondecreasing

in the type. A3 is the same of A1 but for the prin-

cipal's utility. If u1 is three-time di�erentiable, A4

is equivalent to @3u1
@�2@x

� 0 everywhere.

Proposition 15 If A1 through A4 are satis�ed, then

� is supermodular in x and i.

Proof. The following two results are useful:

Claim 1: if f(y; z) and g(y; z) are supermodular

functions, then f(y; z) + g(y; z) is supermodular.

Claim 2: if f(y; z) is supermodular in y and z and

nonincreasing in y, and g(z) is nonnegative and non-

increasing in z, then f(y; z)g(z) is supermodular in

y and z.
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Proof of Claim 2: As f is nonincreasing in y and g

is nonincreasing in z.�
f(y00; z00)� f(y0; z00)

� �
g(z00)� g(z0)

�
� 0

Hence, �
f(y00; z00)� f(y0; z00)

�
g(z00)

�
�
f(y00; z00)� f(y0; z00)

�
g(z0)

�
�
f(y00; z0)� f(y0; z0)

�
g(z0)

where the seond inequality is due to the fact that f

is supermodular and g is nonnegative.

Rewrite:

�(x; i)

= u0 (x; �i) +
Pi+1
pi

(u1 (x; �i)� u1 (x; �i+1)) + u1 (x; �i+1) :

The �rst addend is supermodular in x and i (because

�i is increasing in i). The second addend is the prod-

uct of
Pi+1
pi
, which is nonnegative and nonincreasing

in i (because of A2), and u1 (x; �i) � u1 (x; �i+1),
which is nonincreasing (by A1) and supermodular in

x and i (by A4). The third addend is supermodular
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by assumption. By Claim 1, �(x; i) is supermodular.

The results presented so far are summarized by

Proposition 16 Under A1 through A4, the princi-

pal's problem has a solution that satis�es:

x̂i 2 argmaxx piu0 (x; �i)+Piu1 (x; �i)�Pi+1u1 (x; �i+1)

subject to x � 0 for i = 1; :::; n

t̂i = t̂i�1 + u1 (x̂i; �i)� u1 (x̂i�1; �i) for i = 1; :::; n

x̂0 = 0

t̂0 = 0

In practice, one starts by computing
�
x̂; t̂

�
. If

�
x̂; t̂

�
is unique, then it is a solution of the principal's prob-

lem. If there are multiple
�
x̂; t̂

�
, then there is at

least one such that that x̂ is nondecreaing in i, and

that is a solution to the principal's problem.
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Mechanism Design with Multiple
Agents

� Implementability

{ Bayesian vs. dominant

{ Groves mechanisms

{ Myerson-Satterthwaite

� Correlated types
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Implementability

Assumptions:

(B1) �i, �j independent. �i s Pi. with strictly posi-
tive and di�erentiable density pi.

(B2) Private values: ui (x; ti; �i) (and not ui (x; ti; �)),

except possibly the principal.

(B3) Quasilinear preferences. Agent

ui (x; ti; �i) = vi (x; �i) + ti

Principal:

u0 (x; t0; �0) = v0 (x; �0)�
IX
i=1

ti

or

u0 (x; t0; �0) =
IX
i=0

vi (x; �i)

Allocation x (�) is e�cient if x (�) 2 argmaxx
PI
i=0 vi (x; �i).
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Bayesian/Dominant Implementation

Bayesian: It is a Bayesian equilibrium for the agents

to play according to the principal's wishes.

Dominant: It is a dominant strategy for each agent

to play according to the principal's wishes, indepen-

dent of what others do.

Two Revelation Principles:

(IC) For all i; �i; �̂i;

E��i [ui (y (�i; ��i) ; �i)] � E��i
h
ui
�
y
�
�̂i; ��i

�
; �i
�i

(DIC) For all i; �i; �̂i; �̂�i;

ui
�
y
�
�i; �̂�i

�
; �i
�
� ui

�
y
�
�̂i; �̂�i

�
; �i
�

Obviously, (DIC) implies (IC). Mookherjee-Reichelstein

identify conditions under which imposing (DIC) in-

stead of (IC) involves no welfare loss.

90



Groves Mechanism

Any e�cient x can be implemented in dominant

strategies.

Idea: externality payments

� i's transfers = � -i's payo�

Suppose x� (�) 2 argmaxx
PI
i=0 vi (x; �i)

We want to implement x�. Let

t�i
�
�̂
�
=
X
j 6=i

vj
�
x�
�
�̂i; �̂�i

�
; �̂j

�
+ � i

�
�̂�i

�
;

where � i is an arbitrary function.

Suppose (DIC) is not satis�ed, ie there exists �; �̂�i; �̂i 6=
�i such that

vi
�
x�
�
�̂i; �̂�i

�
; �i
�
+ t�i

�
�̂i; �̂�i

�
> vi

�
x�
�
�i; �̂�i

�
; �i
�
+ t�i

�
�i; �̂�i

�
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Then,

vi
�
x�
�
�̂i; �̂�i

�
; �i
�
+
X
j 6=i

vj
�
x�
�
�̂i; �̂�i

�
; �̂j

�
> vi

�
x�
�
�i; �̂�i

�
; �i
�
+
X
j 6=i

vj
�
x�
�
�i; �̂�i

�
; �̂j

�

Let ~� =
�
�i; �̂�i

�
and x�

�
~�
�
2 argmaxx

PI
i=0 vi

�
x; ~�i

�
.

Then, for all x,

vi
�
x�
�
�i; �̂�i

�
; �i
�
+
X
j 6=i

vj
�
x�
�
�i; �̂�i

�
; �̂j

�
� vi (x; �i) +

X
j 6=i

vj
�
x; �̂j

�

So, if x = x�
�
�̂i; �̂�i

�
,

vi
�
x�
�
�i; �̂�i

�
; �i
�
+
X
j 6=i

vj
�
x�
�
�i; �̂�i

�
; �̂j

�
� vi

�
x�
�
�̂i; �̂�i

�
; �i
�
+
X
j 6=i

vj
�
x�
�
�̂i; �̂�i

�
; �̂j

�
Contradiction.
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Example 2: Second-Price Auction

A principal must allocate a good among n agents.

Agent i's valuation for the good is �i. Valuations

are independently distributed among buyers.

Allocation:
�
i�; ftigi2I

�
Agents' payo�

vi (x; ti; �i) =

(
�i + ti if i = i�

ti if i 6= i�

Principal's payo�:

v0 (x; ti; �i) = �
IX
i=1

ti
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Find Groves mechanism:

1. E�cient allocation

IX
i=0

vi (x; ti; �i) = �i�

Maximize surplus by selecting

i� = argmax
i
�i

2. Externality transfers

X
j 6=i

vj
�
x�
�
�̂i; �̂�i

�
; �̂j

�
=

(
0 if i = i�

maxj 6=i �̂j if i 6= i�

The transfers take the form

ti(�̂i; �̂�i) =

8<: 0 + � i
�
�̂�i

�
if �̂i = maxj �̂j

maxj 6=i �̂j + � i
�
�̂�i

�
if �̂i 6= maxj �̂j

:

3. If we �x � i
�
�̂�i

�
= �maxj 6=i �̂j, we obtain

ti(�̂i; �̂�i) =

(
�maxj 6=i �̂j if �̂i > maxj 6=i �̂j
0 if �̂i < maxj 6=i �̂j

:

which is the standard second-price auction.
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Ine�ciency with Budget Balance

Myerson-Satterthwaite 1983

Coase Theorem: with complete contracts, two par-

ties must achieve an e�cient allocation.

With asymmetric info this is not true.

Example: Two-agent trading game: x 2 f0; 1g

seller �L1 = �5 �H1 = 0

buyer �L2 = 1 �H2 = 6

with pH1 = pH2 = 1
2.

Suppose a benevolent mechanism designer maxi-

mizes surplus (and hence e�ciency). Then x� (�1; �2)
is

�L2 �H2
�L1 x = 0 x = 1

�H1 x = 1 x = 1
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Without budget balance, we can use a Groves mech-

anism:

t1 (�1; �2) = x� (�1; �2) �2 + �1 (�2)

t2 (�1; �2) = x� (�1; �2) �1 + �2 (�1)

where t1 (t2) is the monetary transfer to the seller

(buyer). So,

t1 (�1; �2) =

8>>>><>>>>:
0 + �L1 if �1 = �5; �2 = 1
6 + �H1 if �1 = �5; �2 = 6
1 + �L1 if �1 = 0; �2 = 1

6 + �H1 if �1 = 0; �2 = 6

t2 (�1; �2) =

8>>>><>>>>:
0 + �L2 if �1 = �5; �2 = 1
�5 + �L2 if �1 = �5; �2 = 6
0 + �H2 if �1 = 0; �2 = 1

0 + �H2 if �1 = 0; �2 = 6

Total payments are

t1 + t2 =

8>>>><>>>>:
0 + �L1 + �

L
2 if �1 = �5; �2 = 1

1 + �H1 + �
L
2 if �1 = �5; �2 = 6

1 + �L1 + �
H
2 if �1 = 0; �2 = 1

6 + �H1 + �
H
2 if �1 = 0; �2 = 6

=) there does not exist a Groves mechanism that

satis�es budget balance.
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Is there any mechanism that implements x� and
satis�es BB?

xH1 = E�2

�
x�
�
�H1 ; �2

��
= 1 xH2 = 1

xL1 = E�2

�
x�
�
�L1 ; �2

��
= 1
2 xL2 =

1
2

Show that IRL1 , IR
L
2 , IC

H
1 , IC

H
2 , and BB are incon-

sistent.

IRL1 �L1 x
L
1 + t

L
1 � 0

=) �512 + t
L
1 � 0

=) tL1 � 2:5

(min price for seller with high-quality good)

IRL2 �L2 x
L
2 + t

L
2 � 0

=) 112 + t
L
2 � 0

=) tL2 � �0:5

(max price for buyer with low demand)
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ICH1 �H1 x
H
1 + t

H
1 � �H1 xL1 + tL1

=) 0 � 1 + tH1 � 012 + t
L
1

=) tH1 � tL1
(min price for seller with low-quality good)

ICH2 �H2 x
H
2 + t

H
2 � �H2 xL2 + tL2

=) 6 � 1 + tH2 � 612 + t
L
2

=) tH2 � tL2 � 3

(max price for buyer with high demand)

By BB, let t (�1; �2) = t1 (�1; �2) = �t2 (�1; �2).
Then,

tL1 =
1

2
(t (�5; 1) + t (�5; 6))

tH1 =
1

2
(t (0; 1) + t (0; 6))

tL2 =
1

2
(t (�5; 1) + t (0; 1))

tH2 =
1

2
(t (�5; 6) + t (0; 6))

Rewrite
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IRL1 t(�5; 1) + t(�5; 6) � 5

IRL2 �t(�5; 1)� t(0; 1) � �1

IRL1+IR
L
2 t(�5; 6)� t(0; 1) � 4

and

ICH1 t(0; 1) + t(0; 6) � t(�5; 1) + t(�5; 6)

ICH2 �t(�5; 6)� t(0; 6) � �t(�5; 1)� t(0; 1)� 6

ICH1 +IC
H
2 2 (t(0; 1)� t(�5; 6)) � �6

Put together

t(�5; 6)� t(0; 1) � 4

t(�5; 6)� t(0; 1) � 3

=) contradiction.

The example generalizes
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Theorem 17 (Myerson-Satterthwaite) Suppose that

�1 and �2 have di�erentiable, strictly positive densi-

ties on
h
�L1 ; �

H
1

i
and

h
�L2 ; �

H
2

i
, and that both x� = 1

and x� = 0 have positive probability. Then, there is
no mechanism that satis�es IC, IR, and BB.
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Correlated Types

Cremer-McLean (1985), risk neutrality.

So far we have assumed that �'s are independent
across agents.

Suppose instead they are perfectly correlated: �1; �2.
Then there is a \shoot-the-liar" mechanism:

t
�
�̂1; �̂2

�
= �1 if �̂1 6= �̂2

There exists a Bayesian equilibrium that induces full
revelation at no cost for the principal.

Imperfect correlation?

Take p (�ij��i)

Full rank: Suppose fp (�ij��i)g��i2��i are linearly
independent

=) �i is informative on ��i.

Cremer-McLean: Under risk neutrality and full rank,
the principal can implement any x without leaving
any rent to the agent.
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Example:

Reconsider the auction with two types.

Suppose �i 2 fL;Hg with equal probability, and

Pr
�
�i = Hj�j = H

�
= �

Pr
�
�i = Hj�j = L

�
= 1� �

with � 2
�
1
2; 1

i
.

The principal o�ers the following mechanism;

� First there is a bet: Agent i = 1; 2 reports �i.

He receives a payment of M if �i = �j and he

pays �
1��M if �i 6= �j.

� Next, the principal sells the good to the agent
with the higher �i at price �i.
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If both agents tell the truth, the bet has an expected

value of zero:

Pr
�
�i = �j

�
M � Pr

�
�i 6= �j

� �

1� �
M

= �M � �M = 0

If one agent lies, the bet has a negative expected

value

Pr
�
�i 6= �j

�
M � Pr

�
�i = �j

� �

1� �
M

= (1� �)M � � �

1� �
M = �2�� 1

1� �
M

By choosing an appropriately large M , the principal

makes sure that the agent never lies.

Note that the PC is satis�ed.

This does not work if � = 1
2.

Drawbacks of this approach?
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Lecture 4: Dynamic Games
of Incomplete Information

Combine subgame perfection and Bayesian equilib-

rium.

Main challenge: The action a player chooses can

signal her type to players who move afterwards. The

player realizes the signalling component and factors

it into her choice. The following players realize that

she realizes and...
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Road Map

� The basic signalling game.

� De�nition of perfect Bayesian equilibrium

� Examples:

1. Reputation game

Distinction between separating, semi-separating,

and pooling

Method for checking existence of PBE

2. Spence's job signalling

Multiple equilibria

Intuitive Criterion

3. Money burning

Single crossing condition

Advertising

� Generalization
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The Basic Signalling Game

Player 1: sender, has private info � 2 �.

Player 2: receiver, no private info.

Prior distribution p on �.

1. The sender observes � and selects a1 2 A1;

2. The receiver observes a1 and selects a2 2 A2.

Payo�s: u1 (a1; a2; �) and u2 (a1; a2; �)
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Perfect Bayesian Equilibrium

� Mixed strategy for player 1 (distribution over
A1 given �): �1 (�j�).

� Belief for player 2 (distribution over � given

a1): � (�ja1).

� Mixed strategy for player 2 (distribution over
A2 given a1): �2 (�ja1).
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A perfect Bayesian equilibrium (PBE) is a strategy

pro�le
�
��1; �

�
2

�
and a belief � such that

� Player 1's strategy is optimal. For any type,

the action that the sender plays maximizes her

expected payo� given the receiver's equilibrium

play:

8�; 8a�1 such that ��1 (a�1j�) > 0;

a�1 2 argmaxa1
X
a2

��2 (a2ja1)u1 (a1; a2; �) :

� Player 2's belief is consistent. For every action
that the sender plays with positive probability,

the receiver derives his belief on the sender's

type using Bayes' theorem:

8a�1 such that
X
�02�

p
�
�0
�
��1
�
a�1j�0

�
> 0;

� (�ja�1) =
p (�)��1

�
a�1j�

�
P
�02� p

�
�0
�
��1
�
a�1j�

0
�:
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� Player 2's strategy is optimal. For every action
the sender could play, the receiver's action is

optimal given his belief:

8a1; 8a�2 (a1) such that ��2 (a�2 (a1) ja1) > 0;

a�2 (a1) 2 argmaxa2
X
�

� (�ja1)u2 (a1; a2; �) :

Out-of-equilibrium beliefs:

The consistency requirement applies only to actions

that are played with positive probability in equilib-

rium.

Suppose in a certain equilibrium action a1 is played

with probability zero. Then, no restriction is im-

posed on belief � (�ja1).

Finding PBE's is a form of art. Practice, practice,

practice.
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1. Reputation Game

Kreps-Wilson (1982), Milgrom-Roberts (1982).

Two �rms: incumbent (i = 1), challenger (i = 2).

Two periods.

1. Incumbent observes � 2 fsane,crazyg, where
Pr (sane) = p. She chooses a1 2 fprey,accomodateg.

2. Challenger chooses a2 2 fstay,exitg :
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Payo�s are

sane
stay exit

prey P1; P2 M1; 0
accomodate D1; D2 M1; 0

crazy
stay exit

prey K1;K2 K1; 0
accomodate D1; D2 M1; 0

With

P1 < D1 < M1 < K1;

K2 < 0 < P2 < D2:
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Also assume that the proportion of crazy types is

not too high:

pP2 � � (1� p)K2 (5)

What is the set of PBE of this game?

The crazy type has a dominant strategy. He should

always prey: a�1 (crazy) = prey.

What does the sane type do? Let

� = Pr (a�1 (sane) = prey) :
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Reduced form of a game of entry deterrence.

� The incumbent monopolist faces a challenger.

� Some crazy monopolists love to �ght on price,
but the sane majority would rather accomodate

entry than engage in a long-term �ght.

� The challenger enters the market without know-
ing what type the monopolist is.

� The incumbent can engage in a price battle
(prey) or collude (accomodate). Some sane mo-

nopolists may want to pretend to be crazy.

� The challenger can stay or leave. If the chal-
lenger stays, a crazy incumbent keeps �ghting

while a sane incumbent colludes.

More in general: this is a theory of threats.
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Three Classes of Equilibria

1. Separating equilibrium: � = 0. A sane chal-

lenger and a crazy challenger always take di�er-

ent actions. In equilibrium the challenger knows

the incumbent's type.

2. Semi-separating equilibrium: � 2 (0; 1). A sane
type and a crazy type sometimes choose di�er-

ent actions, but not always.

3. Pooling equilibrium: � = 1. The two types

always choose the same action.
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Separating Equilibrium

Proposition 18 There exists no separating equilib-

rium.

Strategy of proof:

1. Assume there exists a separating equilibrium

(the sane incumbent accomodates: � = 0).

2. Determine the challenger's belief, determine the

challenger's optimal strategy.

3. Determine the incumbent's optimal strategy.

4. Show that the incumbent's optimal strategy is

not to accomodate.
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If � = 0, the challenger's belief is

8a�1 such that
X
�02�

p
�
�0
�
��1
�
a�1j�0

�
> 0;

� (�ja�1) =
p (�)��1

�
a�1j�

�
P
�02� p

�
�0
�
��1
�
a�1j�

0
�:

That is,

� (� = sanejprey) = 0;

� (� = sanejaccomodate) = 1:

There are no out-of-equilibrium beliefs.
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The challenger's optimal strategy is:

8a1; 8a�2 (a1) such that ��2 (a�2ja1) > 0;

a�2 (a1) 2 argmaxa2
X
�

� (�ja1)u2 (a1; a2; �) :

Suppose a1 = prey. The expected payo� isX
�

� (�jprey)u2 (prey; a2; �)

= u2 (prey; a2; crazy)

and

u2 (prey; a2; crazy) =

(
K2 if a2 = stay;
0 if a2 = exit.

The optimal strategy is to exit.
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Suppose a1 = accomodate. The expected payo� isX
�

� (�jaccomodate)u2 (accomodate; a2; �)

= u2 (accomodate; a2; sane)

and

u2 (accomodate; a2; sane) =

(
D2 if a2 = stay;
0 if a2 = exit.

The optimal strategy is to stay.

To recap, the challenger's optimal strategy is

a�2 (a1) =

(
stay if a1 = accomodate;
exit if a1 = prey.
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The incumbent's optimal strategy is

8�; 8a�1 such that ��1 (a�1j�) > 0;

a�1 2 argmaxa1
X
a2

��2 (a2ja1)u1 (a1; a2; �) :

Given the challenger's strategy (which we saw above),

the incumbent's expected payo� isX
a2

��2 (a2ja1)u1 (a1; a2; �)

=

(
u1 (accomodate; stay; �) if a1 = accomodate;
u1 (prey; exit; �) if a1 = prey.

We already know that preying is optimal when � =

crazy.

Suppose � = sane. The incumbent gets

u1 (accomodate; stay; sane) = D1 if a1 = accomodate;
u1 (prey; exit; sane) =M1 if a1 = prey.

As M1 > D1, a sane incumbent's optimal strategy

is to prey.

We have a contradiction because we assumed that

a sane incumbent accomodates. There exists no

separating equilibrium.

122



Semi-separating Equilibrium

Proposition 19 There exists a unique semi-separating

equilibrium. A sane incumbent preys with probabil-

ity � = �(1�p)K2pP2
. If the incumbent accomodates,

the challenger stays. If the incumbent preys, the

challenger stays with probability M1�D1
M1�P1 .

Strategy of proof: same as for the separating equi-

librium but instead of a contradiction we get an

equilibrium.

Suppose � 2 (0; 1).

123



The challenger's belief is

� (sanejprey) =
p�

p�+ 1� p
;

� (sanejaccomodate) = 1:

There are no out-of-equilibrium beliefs.
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The challenger's optimal strategy is:

The expected payo� isX
�

� (�ja1)u2 (a1; a2; �)

= � (saneja1)u2 (a1; a2; sane)
+ (1� � (saneja1))u2 (a1; a2; crazy)

Suppose a1 = accomodate. If a2 = stay, the ex-

pected payo� is D2. If a2 = exit, the payo� is 0.

Therefore, the challenger should stay.

Suppose a1 = prey. If a2 = stay, the expected payo�

is

� (sanejprey)P2 + (1� � (sanejprey))K2
=

p�

p�+ 1� p
P2 +

1� p
p�+ 1� p

K2

If a2 = exit, the expected payo� is 0. Therefore,

the challenger stays if and only if

p�P2 � � (1� p)K2:
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That is, the challenger

exits if � < �(1�p)K2pP2

is indi�erent if � = �(1�p)K2pP2

stays if � > �(1�p)K2pP2

Note that �(1�p)K2pP2
2 (0; 1) because of (5).
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The incumbent's optimal strategy :

In order for � 2 (0; 1), the incumbent's expected

payo� must be the same when he preys and when

he accomodates:

If the incumbent accomodates, the challenger stays

and the payo� is D1:

If the incumbent preys, let � = Pr (a2 (prey) = stay).

The incumbent's expected payo� is

�P1 + (1� �)M1:

The payo�s are equal if

� =
M1 �D1
M1 � P1

2 (0; 1) :

But if � 2 (0; 1), it must be that

� = �(1� p)K2
pP2

:
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To re-cap: in a semi-separating equilibrium, it must

be that

� = �(1� p)K2
pP2

;

� =
M1 �D1
M1 � P1

:

For instance, suppose that p = 3
4, K2 = �1, P2 =

1, M1 = 4, D1 = 2, and P1 = 1. Then,

� =
1

3
� =

2

3

p�

p�+ 1� p
=
1

2
:

A sane incumbent preys with probability 13.

If the incumbent preys, the challenger believes that

she is sane with probability 12.

If the incumbent preys, the challenger stays with

probability 23.
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Pooling Equilibrium

Proposition 20 There exists no pooling equilibrium.

Strategy of proof:

1. Assume there exists a pooling equilibrium (the

sane incumbent always preys: � = 1).

2. Determine the challenger's belief (watch out for

out-of-equilibrium beliefs).

3. Determine the challenger's optimal strategy for

every possible out-of-equilibrium belief.

4. Show that the incumbent's optimal strategy is

to accomodate.
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Challenger's belief :

If � = 1, the only action that the incumbent plays

in equilibrium is a1 = prey.

Belief consistency requires:

� (�ja�1) =
p (�)��1 (preyj�)P

�02� p
�
�0
�
��1
�
preyj�0

� = p (�)P
�02� p

�
�0
� = p (�) :

As both types play the same action, the belief equals

the prior.

Instead, the belief � (�jaccomodate) is out of equi-
librium because a�1 = accomodate is never played.

Belief consistency imposes no requirement on � (�jaccomodate).

Let


 = � (�jaccomodate) 2 [0; 1] :

As we want to show that there exists no pooling

equilibrium, we have to examine all possible values

of 
.
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Challenger's strategy :

If a1 = prey, the challenger gets

pP2 + (1� p)K2 if a2 = stay;
0 if a2 = exit.

The challenger stays because by (5), pP2+(1� p)K2 >
0.

If a1 = accomodate, the challenger's payo� is D2
independent of whether � = sane or � = crazy. The

challenger stays.

The payo� does not depend on the out-of-equilibrium

belief 
. Lucky case.

The challenger's optimal strategy is to always stay.
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Incumbent's strategy :

The incumbent knows that the challenger stays.

If � = sane, the payo� is P1 if a1 = prey and D1 if

a1 = accomodate. As D1 > P1, a sane incumbent

acoomodates.

This is a contradiction because we had assumed that

a sane incumbent always preys.
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To Re-cap

Proposition 21 The reputation game has a unique

perfect Bayesian equilibrium. It is a semi-separating

equilibrium in which a sane incumbent preys with

probability � = �(1�p)K2pP2
.
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2. Spence's Job Signalling Game

Spence (1974)

Players: a worker, a large number of �rms

1. The worker observes her type � 2 f�L; �Hg
where �L < �H and Pr (� = �H) = 
, and she
chooses a level of education a 2 [0;1) at cost
a
� .

2. The �rms observe a and o�er the worker a wage
w.

3. The worker selects one of the �rms and gener-
ates a product of value �.

The payo� of the �rm who hires the worker is

� � w:
The payo� of the worker is

w � a
�
:

Idea: education is a sorting device (extreme case)

134



Reduced form of the game (assume �rms have sym-

metric beliefs):

1. The worker observes her type � 2 f�L; �Hg
where �L < �H , and she chooses a level of

education a 2 [0;1) at cost a� .

2. The worker receives a wage

w = � (�H ja) �H + � (�Lja) �L;

where � (�ja) is the �rm's belief on the worker's
type.

Denote the �rm's belief as


̂ (a) = � (�H ja) :

The wage is then

w = �L + 
̂ (a) (�H � �L) :
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Separating Equilibria

Suppose a (�L) 6= a (�H).

Belief/wage on the equilibrium path:


̂ (a (�L)) = 0 
̂ (a (�H)) = 1:

Belief/wage o� the equilibrium path:


̂ (a) 2 [0; 1] 8a =2 fa (�L) ; a (�H)g :

1. The bad worker should not want to deviate:

�L �
a (�L)

�L
� �L + 
̂ (a) (�H � �L)�

a

�L
8a

This implies that a (�L) = 0. Suppose not. If

not, the worker could get a higher payo� by

playing a = 0.

With a (�L) = 0, the condition above re-writes

as


̂ (a) � a

�L (�H � �L)
8a
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2. The bad worker should not want to deviate to

a (�H):

�L � �H �
a (�H)

�L
(6)

3. The good worker should not want to deviate to

a (�L) = 0:

�H �
a (�H)

�H
� �L (7)

Conditions (6) and (7) together imply

�L (�H � �L) � a (�H) � �H (�H � �L)

4. The good worker should not want to deviate to

any other a:

�H�
a (�H)

�H
� �L+ 
̂ (a) (�H � �L)�

a

�H
8a

The condition rewrites as


̂ (a) � 1� a (�H)� a
�H (�H � �L)

8a
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Together with the condition on the bad worker

this implies


̂ (a) � min
 

a

�L (�H � �L)
; 1� a (�H)� a

�H (�H � �L)

!

To re-cap, the necessary and su�cient conditions

for a separating equilibrium are

a (�L) = 0;

�L (�H � �L) � a (�H) � �H (�H � �L) ;


̂ (a) � min

 
a

�L (�H � �L)
; 1� a (�H)� a

�H (�H � �L)

!
8a

Note that the belief condition is satis�ed by setting

discontinuous beliefs of this form:


̂ (a) =

(
0 if a < a (�H)
1 if a � a (�H).

Example: Let �L = 1 and �H = 2.

The condition on a (�H) becomes 1 � a (�H) � 2.
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For every �a 2 [1; 2], there exists a separating equi-
librium in which

a (�L) = 0;

a (�H) = �a;


̂ (a) =

(
0 if a < �a
1 if a � �a.
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Pooling Equilibria

Suppose a (�L) = a (�H) = �a.

Belief/wage on the equilibrium path:


̂ (�a) = 
:

Belief/wage o� the equilibrium path:


̂ (a) 2 [0; 1] 8a 6= �a:

1. The bad worker should not want to deviate:


 (�H � �L)�
�a

�L
� 
̂ (a) (�H � �L)�

a

�L
8a

2. In particular, the bad worker should not want

to deviate to a = 0:


 (�H � �L)�
�a

�L
� 
̂ (0) (�H � �L) :

This imposes constraint

�a � (
 � 
̂ (0)) (�H � �L) �L:
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3. The good worker should not want to deviate:


 (�H � �L)�
�a

�H
� 
̂ (a) (�H � �L)�

a

�H
8a

4. In particular, the good worker should not want

to deviate to a = 0, which imposes constraint

�a � (
 � 
̂ (0)) (�H � �L) �H :

It is easy to check that the conditions in 1 through

4 are satis�ed if


̂ (a) =

(
0 if a < �a

 if a � �a.

�a � 
 (�H � �L) �L:

which determines a continuum of pooling equilibria.
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Intuitive Criterion

As we saw in the last example, there may be multiple

perfect Bayesian equilibria.

Can we select among equilibria?

Intuitive Criterion: Cho and Kreps 1987

Idea: some out-of-equilibrium beliefs are unreason-

able.

Suppose there are only two types: � 2 f�1; �2g

Take a PBE and consider out-of-equilibrium action

â1

If:

1. Type �1 gets a strictly higher utility by deviating

to â1 if the receiver has belief � (� = �1jâ1) =
1;
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2. Type �2 does not get a strictly higher utility by

deviating to â1 for any belief � (� = �1jâ1) that
the receiver may hold:

Then, we say that the PBE fails the Intuitive Crite-

rion.

Intuition: the Good Type tells the receiver:

\I am going to make a deviation that cannot possi-

bly be pro�table for a Bad Type. Therefore, when I

deviate, you must believe I am a Good Type."
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Applying the Intuitive Criterion to
Spence:

Proposition 22 The only PBE that survives the In-

tuitive Criterion is the separating equilibrium with

a (�H) = �L (�H � �L).

Separating Equilibria

Take a separating equilibrium with �L (�H � �L) <
a (�H) � �H (�H � �L) and consider a deviation to
â = �L (�H � �L).

1. Type �H gets a strictly higher utility by devi-

ating to â if the receiver has belief 
̂ (â) = 1,

because

�H �
�L (�H � �L)

�H
> �H �

a (�H)

�H
:
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2. Type �2 does not get a strictly higher utility

by deviating to â1 for any belief 
̂ (â) 2 [0; 1]
because

�L + 
̂ (â) (�H � �L)�
�L (�H � �L)

�L
� �L 8
̂ (â) 2 [0; 1] :

The only separating equilibrium that survives the

Intuitive Criterion is the one in which

a (�H) = �L (�H � �L) :
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Pooling Equilibria

Take a pooling equilibrium with a (�L) = a (�H) =
�a � 
 (�H � �L) �H : and consider a deviation to

â = �a+ (1� 
) (�H � �L) �L:

1. Type �H gets a strictly higher utility by devi-
ating to â if the receiver has belief 
̂ (â) = 1,
because

�H �
â

�H
= �H �

(1� 
) (�H � �L) �L
�H

� �a

�H

> �H �
(1� 
) (�H � �L) �L

�L
� �a

�H

= 
�H + (1� 
) �L �
�a

�H
:

2. Type �2 does not get a strictly higher utility
by deviating to â1 for any belief 
̂ (â) 2 [0; 1]
because

�H �
â

�L
= 
�H + (1� 
) �L �

�a

�L
:

All pooling equilibria fail the Intuitive Criterion.
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Spence Signalling in Practice

Two stories about education:

� Productivity increase.

� Sorting device.

Very di�erent policy implications.

How can you tell them apart empirically?

Weiss (1995), Altonji (1995), Altonji and Pierret

(2001)
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Generalization of PBE

We focused on signalling games:

� only two players;

� in each period, only one player moves.

In other cases, PBE may be too weak.

Sequential equilibrium (Kreps-Wilson 1982)
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Lecture 5: Moral Hazard

Mas Colell, Whinston, Green

Principal-agent: hidden type or hidden action

De�nitions

�: observed pro�t, � 2 [�L; �H].

e: agent's action (e�ort), e 2 feL; eHg.

Conditional pro�t density:

f (�je) with f > 0 for all �; e

First-order stochastic dominance:

F (�jeH) � F (�jeL) for all �

with a strict inequality for some �, implying (by

integration by parts):

E (�jeH) > E (�jeL) :
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Agent maximizes v (w)� g(e) with v0 > 0, v00 � 0,
and g (eH) > g (eL).

Principal maximizes � � w

Reservation value �u
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Observable E�ort

Contract speci�es e and w (�)

max
e;w

Z �H
�L

(� � w (�)) f (�je) d�

subject toZ �H
�L

v (w (�)) f (�je) d� � g(e) � �u: (IR)

Step 1 Given e, what is the cheapest compensation

scheme that implements it?

min
w

Z �H
�L

w (�) f (�je) d�

subject toZ �H
�L

v (w (�)) f (�je) d� � g(e) � �u:

Lagrangian

L = �
Z �H
�L

w (�) f (�je) d�

+


 Z �H
�L

v (w (�)) f (�je) d� � g(e)� �u

!
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First-order condition

8� f (�je) = 
v0 (w (�)) f (�je)

which rewrites as

8� 1

v0 (w (�))
= 
:

If v00 > 0 (risk aversion), v0 (w (�)) is a con-
stant. Therefore, w (�) = w�e such that v (w

�
e)�

g(e) = �u.

If v00 = 0 (risk neutrality), any w that satis�es

IR works.

Step 2 Choose the optimal e

max
e

Z �H
�L

�f (�je) d� � v�1 (�u+ g(e))

With a risk-neutral agent (v (w) = w),

max
e

Z �H
�L

�f (�je) d� � g(e)
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Unobservable E�ort: Risk-Neutral Agent

The optimal contract involves \selling the store"

w (�) = � � �w:

The agent solves

e� = argmax
e

Z �H
�L

�f (�je) d� � g(e):

The principal setsZ �H
�L

�f (�je�) d� � g(e�)� �w = �u:

Surplus maximization and zero rent.

Proposition 26 With a risk neutral agent and unob-

servable e�ort, the optimal contract results in the

same e�ort and the same utility as when e�ort is

observed.
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Unobservable E�ort: Risk-Averse Agent

Cost of implementing e

min
w

Z �H
�L

w (�) f (�je) d�

subject toZ �H
�L

v (w (�)) f (�je) d� � g(e) � �u: (IR)

e 2 argmax
~e

Z �H
�L

v (w (�)) f (�j~e) d� � g(~e) (IC)

If e = eL, IC is easy to satisfy. Set a constant wage

w that satis�es IR as an equality. IC is satis�ed too

because g (eH) > g (eL):

w�eL = v
�1 (�u+ g(eL)) :

If e = eH , IC becomesZ �H
�L

v (w (�)) f (�jeH) d� � g(eH)

�
Z �H
�L

v (w (�)) f (�jeL) d� � g(eL)
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Lagrangian:

L = �
Z �H
�L

w (�) f (�jeH) d�

+


 Z �H
�L

v (w (�)) f (�jeH) d� � g(eH)� �u

!

+�

 Z �H
�L

v (w (�)) f (�jeH) d� � g(eH)

�
Z �H
�L

v (w (�)) f (�jeL) d� � g(eL)
!
:

Foc: for all �,

@L

@w
= �f (�jeH) + 
v0 (w (�)) f (�jeH)

+�
�
v0 (w (�)) f (�jeH)� v0 (w (�)) f (�jeL)

�
which rewrites as

1

v0 (w (�))
= 
 + �

 
1� f (�jeL)

f (�jeH)

!
(FOC)

Lemma 27 If e = eH , 
 > 0 and � > 0.

Proof: Suppose 
 = � = 0. Contradiction because

v0 > 0.
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Suppose 
 = 0. 9~� such that 8� 2 ~� we have that
f(�jeL)
f(�jeH)

> 1. Then, for � 2 ~�

1

v0 (w (�))
= 0 + � (�) < 0

Suppose � = 0. w (�) is constant =) the agent

chooses e = eL. �
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Interpreting FOC

1

v0 (w (�))
= 
 + �

 
1� f (�jeL)

f (�jeH)

!

Let ŵ be such that 1
v0(ŵ) = 
.

f (�jeL)
f (�jeH)

< 1 =) w (�) > ŵ

f (�jeL)
f (�jeH)

> 1 =) w (�) < ŵ

f(�jeL)
f(�jeH)

: likelihood ratio (but beware of a statistical

interpretation).

The wage w need not be increasing in �.

Su�cient condition: monotone likelihood ratio prop-

erty (Milgrom 1982).

f (�jeL)
f (�jeH)

decreasing in �

[FIGURES]
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E�ort Choice

The cost of implementing eL is the same as under

observable e�ort.

The cost of implementing eH is higher because of

variance and risk aversion.

Summary

With unobservable e�ort:

- the contract to implement eL is 
at.

- the contract to implement eH is given by FOC and

has a higher expected payment than under observ-

able e.

- non-observability may cause a welfare loss.

172



Additional Signal

Suppose that the principal can observe � and an

additional signal y. Should compensation depend

on y as well?

Holmstrom (1979): yes, unless � is a su�cient sta-

tistic for y:

~h(yj�; e) = h(yj�)

To see this, note that statistical su�ciency implies:

~f (�; yje) = ~h(yj�; e)f (�je) = h(yj�)f (�je)

Hence, the �rst-order condition with the additional

signal is:

1

v0 (w (�))
= 
+�

 
1�

~f (�; yjeL)
~f (�; yjeH)

!
= 
+�

 
1� f (�jeL)

f (�jeH)

!
:

If the condition above is satis�ed, the foc is identical

to the foc with � only.
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