ECC5650 –Microeconomic Theory

Topic 4: Topics in Consumer Theory

Primary Readings: 

· JR – Chapter 4: 4.2, .4.3 & 4.4

· DL – Chapters 4, 5 & 11: 4.7, 5.8, 11.1-11.5

Additional References (at the end) 

In this lecture, we will discuss a few special topics that have important implications in the consumer theory. The first question is related to whether the process of deriving consumer’s demand function is reversible, i.e., for a given demand function, do we have a utility function that is consistent with the demand function. Secondly, we will discuss the consumer preferences under uncertainty. We will establish the existence of the expected utility function based on a set of axioms. The issue of risk (as a result of uncertainty), in the particular, the measure and implication of the risk aversion, will be addressed too.  Thirdly, we discuss an extension of consumer theory, the concept of diamond goods where the value, rather than just the quantity, of a good enters the utility function. Interestingly, we may then have upward-sloping compensated demand curves and burden-free (not just excess-burden free) and negative-burden taxes.
4.1
Integrability Problem

Given a demand function x(p, y), can we recover the underlying utility function? This is the so-called integrability problem. Technically speaking, this is a problem of solving a system of partial differential equations. 

Recall that from the discussions in the previous lectures, we know that a well-behaved demand function x(p, y) satisfies the following conditions: 

1. Homogeneity of degree 0 in (p, y):: x(tp, ty) = x(p, y) for all t ( 0;

2. Walras’ Law (Budget balancedness): p(x(p, y) = y;

3. Slutsky matrix S is symmetric

4. Slutsky matrix S is negative semidefinite. 

Following results demonstrates that the Condition 1 is redundant: it is a consequence of  Walras’s Law and the symmetry of the Slutsky matrix. 

Proposition: If the demand function x(p, y) satisfies the Walras’s Law and its Slutsky matrix is symmetric, then it is homogeneous of degree zero in p and y. 

Proof. We know that from the Walras’ Law: p(x(p, y) = y, we will get the following identities: 


[image: image1.wmf].

1

)

,

(

     

and

     

)

,

(

)

,

(

1

1

=

¶

¶

-

=

¶

¶

å

å

=

=

m

j

j

j

i

m

i

i

j

j

y

y

x

p

y

x

p

y

x

p

p

p

p


Define fi(t) = xi(tp, ty) for all t > 0. We need to prove that fi(t) is constant, i.e., fi’(t) = 0. Now, 
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This proves the result. (
The implication of the above result is remarkable: 

· The three conditions, namely Walras’ Law, Symmetry of the Slutsky matrix, and Negative Semidefiniteness of the Slutsky matrix, are all we need to ensure that the observable behavior is consistent with the demand system derived from utility-maximizing behavior. 

· The problem of recovering the utility function from a consumer’s demand function is known as the integrability problem. 
Proposition (Integrability Theorem): 

A continuously differentiable function x: 
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 is the demand function generated by some monotonic, quasiconcave utility function if (only if, when utility is strictly monotonic, strictly quasiconcave) it satisfies Walras’ Law, symmetry, and negative semidefiniteness.  

Practical Significance of Integrability Theorem

· During an empirical analysis, suppose that we need to estimate a consumer’s demand function based on a finite set of data points (say, by applying an econometric method). If we want to make sure that such a demand function is consistent with utility-maximization, all we need to do is to check that the demand function satisfies Walras’ Law and its associated Slutsky matrix is symmetric and negative semidefinite. 

4.2
Consumer Theory under Uncertainty

4.2.1
Gambles (or Lotteries)

In our previous discussions, the consumer was assumed to have a preference relation over all consumption bundle x in the consumption set X. Under the uncertainty, we have to change this setup. On the one hand, we keep the original notion of preference relation; while on the other hand, we need to introduce a preference relation over gambles or Lotteries. 

Let A = {a1, a2, …, an} denote a finite set of outcomes, where aj could be a consumption bundle, amount of money (positive or negative), or anything at all. The uncertainty is associated the likelihood with the outcome aj, which is captured by the probability of this outcome, say, pj. With these notion, we denote this simple gamble by (p1(a1, …, pn(an). 

Definition (Simple Gambles). For a given A = {a1, a2, …, an}, the associated set of simple gambles is defined by: 
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A compound gamble is a gamble whose outcomes (prizes) are themselves games. Technically speaking, the compounding can go on forever, but we limit our discussion on finite compounding only. Let G be the set of all gambles (both simple or compound). Then the objects of choice in decision making under uncertainty are gambles, i.e., the consumer has a preference relation 
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 over the set G. 

4.2.2
Axioms of Choice under Uncertainty

Axiom G1 (Completeness). For any g and g'( G, ether g 
[image: image6.png]


 g' or g' 
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 g. 

Axiom G2 (Reflexivity). For all g in G, g 
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 g. 

Axiom G3 (Transitivity). For any g, g' and g"( G, if g 
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 g' and g' 
[image: image10.png]


 g", then g 
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Assumption

· Without loss of generality, for the outcomes from the simple gamble, we can index them so that a1 
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 a2 
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 … 
[image: image14.png]


 an. 

Axiom G4 (Continuity). For any g in G, there is some probability, ( ( [0, 1] such that 

g ~ (((a1, (1-()(an) 

Axiom G5 (Monotonicity). For all probabilities (, ( ( [0, 1], 

(((a1, (1-()(an) 
[image: image15.png]


 (((a1, (1-()(an) 

if and only if  ( ( (. 

Remarks:

· The monotonicity condition rules out the possibility that the decision maker is indifferent among all outcomes in A since at least a1 
[image: image16.wmf]f

an. 

· It can be shown that G1 and G2 are redundant in the presence of G3, G4 and G5. Nevertheless, we assume them just for the sake of being consistent with the traditional preference relations discussed before. 

Axiom G6 (Substitution). If g = (p1(g1, …, pk(gk) and h = (p1(h1, …, pk(hk) in G, and if hj ~ gj for every j, then h ~ g. 

This axiom says that the decision maker is indifferent between one gamble and another if he is indifferent in individual realizations. 

It is easy to check that any compound gamble can be re-represented by a simple gamble. The following axiom requires that the decision maker must be indifferent between the original compound gamble and the corresponding induced simple gamble.  

Axiom G7 (Reduction to Simple Gamble). For any g in G, if (p1(a1, …, pn(an) is the simple gamble induced by g, then g ~ (p1(a1, …, pn(an).

4.2.3
Von Neumann-Morgenstern Expected Utility Function

Suppose that u: G ( R is a utility function representing 
[image: image17.png]


 on G, that is, 

g 
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 g' ( u(g) ( u(g'). 

Let u(aj) be the utility value corresponding to the degenerate (simple) gamble (1(aj), i.e., the outcome aj occurs with certainty. 

Definition (Expected Utility Function). The utility function u: G ( R is defined as 
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where (p1(a1, …, pn(an) is the simple gamble induced by g ( G.  

Proposition (Von Neumann-Morgenstern Theorem: Existence of Expected Utility Function). Let the preference 
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 over G satisfy axioms G3 to G7. Then there exists an expected utility function u G ( R representing 
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.

Proof. (Constructive, just like before). First, by G4, it follows that for any g in G, there exists some number u(g) such that 

g ~ (u(g)(a1, (1- u(g))(an).

Then by the monotonicity axiom G5, we know that u(g) is uniquely defined. Hence u is a real-valued function defined on G. 

To show that u in fact represents 
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, note that for any g, g' in G, by G3 and G5, 

g 
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 g' ( (u(g)(a1, (1- u(g))(an) 
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 (u(g')(a1, (1- u(g'))(an) ( u(g) ( u(g'). 
We now show that the above-defined u is indeed an expected utility function. For any g in G, let gS = (p1(a1, …, pn(an) be the simple gamble induced by g. We must show that 
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which leads to show that 
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Note that by definition, 

aj ~ (u(aj)(a1, (1-u(aj)(an) ( qj, for j = 1, …, n. 

Then by G6, it follows that 

gS = (p1(a1, …, pn(an) ~ (p1(q1, …, pn(qn) ( g'.

Now the trick is to further represent g' into a simple gamble consisting of only a1 and an. We just need to find out the effective probability that a1 occurs under g’. To see this, note that 

· a1 results if for any j, qj occurs (with probability pj) and a1 is the result of simple gamble qj (with probability u(aj));

· this implies that for every j, a1 occurs with the probability pj u(aj); 

· since qj's are mutually exclusive, then the total (effective) probability that a1 occurs is the sum 
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By the similar argument, the probability that an occurs with the probability of
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which is equal to 1-
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 Therefore, we have the following 
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As u(gS) is uniquely defined, it follows that 
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This proves the result.  ( 

Proposition (Uniqueness of Expected Utility Function). The expected utility function u(.) that represents 
[image: image32.png]


 is unique subject to positive affine transformation. Another function v(.) is also an expected utility function if and only if for some constants ( and ( > 0, the function 

v(g) = ( + ( u(g), for g in G. 

Proof Omitted and please refer to JR (p.205-206). 

Remarks: 

· The key implication of the above result is that the expected utility functions are neither completely unique, nor entirely ordinal. This is in strong contrast with the normal utility function, which is just ordinal. 

· Even so, without additional information (on which see Ng 1996), we still cannot make interpersonal comparisons among decision makers. 

· Many economists regard the utility functions derived from the expected utility hypothesis are different from the actual subjective utility functions of the decision makers. However, Ng (1984) shows that the two are the same.

4.2.4
Risk Aversion

Definition. Let u(.) be an individual's expected utility function for gambles over nonnegative levels of wealth. Then for the simple gamble g = (p1(w1, …, pn(wn), the individual is said to be 

1.
risk averse at g if u(E(g)) > u(g); 

2.
risk neutral at g if u(E(g)) = u(g); 

3.
risk loving at g if u(E(g)) < u(g);
where 
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Definition (Certainty Equivalent and Risk Premium). 

(i)
The certainty equivalent of any gamble g is the level of wealth CE, offered with certainty, such that u(g) = u(CE). 

(ii)
The risk premium is an amount of wealth P such that u(g) = u(E(g) - P). It is obvious that P = E(g) - CE. 

Definition (Arrow-Pratt Measure of Absolute Risk Aversion). 
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· It can be shown that the larger r(w) is, the more risk averse an individual becomes. 

· Relative risk aversion is measured by  rw, why?

Example 1 (Demand for Insurance)

Suppose a consumer initially has monetary wealth W. There is some probability p that he will loss an amount L. The consumer can purchase insurance that pays him q dollars in the even that he incurs this loss. The amount of money that he has to pay for q dollars of insurance coverage is (q; here ( is the premium per dollar of coverage.  How much coverage will this consumer purchase? 

Consider this consumer's utility maximization problem: 

max [p u(W - L - (q + q) + (1-p) u(W - (q)].

As the only variable is q, so the first-order condition is 

p u'(W - L + (1-()q*) (1- ()  - (1-p) u'(W - (q*) ( = 0 
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Now let us look the issue from the insurance firm's perspective. It is easy to see that the firm's expect profit is given by: 

(1 - p) (q - p (1 - ()q. 

Assume that the insurance industry is competitive, then this firm's profit must be zero, i.e., 

(1 - p) (q - p (1 - ()q = 0,  

which leads to ( = p. This implies that in a competitive market, the insurance firm charges an actuarially fair premium: the cost of a policy is precisely its expected value, i.e., ( = p. Now plugging ( = p into the FOC, we have 

u'(W - L + (1 - ()q*) = u'(W - (q*).

Now if the individual is risk averse so that u"(W) < 0, then the above equation implies that 

W - L + (1 - ()q* = W - (q*,

from which it follows that L = q*, meaning that the consumer will completely insure himself against the loss L. 

Remarks: 

· The result of the above analysis critically depends on the assumption that the consumer cannot influence the probability of loss. 

· Very often, the probability and the amount of damage are not fixed. If the efforts to reduce the chance and the extent of damage are costly to observe, buying insurance will the individual's incentive to supply such efforts. This is known as moral hazard problem. 

Example 2 (Asset Pricing)

Suppose that there are n risky assets and one risk-free asset. Risky asset j has a random total return 
[image: image36.wmf]i
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 for i = 1, …, n and the risk-free asset has a total return R0. (The total return is equal to one plus the rate of return.) The consumer has an initial wealth of w and chooses to invest a fraction xi in asset i = 0, 1, …, n. Then the consumer's problem is 
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This can be rewritten as the following maximization problem: 
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Differentiating w.r.t. xi, we get the first-order conditions: 
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 for i = 1, …, n. 

Or alternatively, 
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Using the covariance identity for two random variables: 

cov(X, Y) = E(XY) - (E(X)) (E(Y)),

we get the following important equation: 
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This equation says that the expected return on any risky asset can be decomposed into two components: the risk-free return plus the risk premium (not the same risk premium as defined early). The risk premium depends on the covariance between the marginal utility of wealth and the return of the asset. 

· Consider an asset whose return is positively correlated with wealth. If the consumer is risk averse, then his marginal utility of wealth decreases with wealth (u'(W) < 0). Then such an asset will be negatively correlated with marginal utility. This implies that the risk premium of this asset must be positive. 

Example 3 (Paradox) : Why do people both insure and buy lottery tickets? Two alternative explanations: Friedman & Savage (1948) vs. Ng (1965). In fact, a third explanation, or an explanation justifying the Friedman-Savage utility function may be possible; it combines the concave part due to survival assurance and the convex part due to the winner-take-all game of male competition in reproductive fitness. (On the latter part, see Dekel & Scotchmer 1999.)

4.3 Diamond Goods and Upward-sloping Compensated Demand Curves.

· Pure diamond goods: value (price times quantity) instead of quantity enters the utility function.
· Mixed diamond goods: both the value and quantity enter the utility function.
· The demand curve for a pure diamond good is a rectangular hyperbola.
· The optimal tax rate on a pure diamond good with a horizontal supply curve is arbitrarily high, as consumers suffers no loss and the government gain in tax revenue.
· The compensated demand curve for a mixed diamond good may be upward-sloping even in the absence of inferiority and in the absence of a change in the degree of ‘diamondness’.
· Consumers may positively gain from a tax on a mixed diamond good.
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