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Lecture 2: Auctions

Jehle-Reny

Ancient mechanism

New applications: spectrum auctions, online auc-

tions, etc.

Paul Klemperer, Auctions: Theory and Practice (Avail-

able on: http://www.paulklemperer.org/)

Vijay Krishna, Auction Theory, 2002.

The traditional formats:

� First-price sealed bid;

� Second-price sealed bid;

� English auction

� Dutch auction
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What is an Auction?

• auc•tion

– A public sale of property or merchandise to the highest bidder.

– A market institution with explicit rules which determine prices 
and the allocation of resources  based on bids.

– Bidding in the game of bridge.

• Derivation: From the Latin “auctus”, which is the past 
participle of “augere”, to increase.
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Auctions

• “The Greatest Auction in 
History”

– Safire, William. “The 
Greatest Auction Ever: Get 
Top Dollar For the 
Spectrum,”The New York 
Times, 16 March 1995.
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Types of Rules: Open Outcry

• 1.English auction. Price increases until only 
one bidder remains

• 2.Dutch auction. Price decreases until some 
bidder jumps in
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Types of Rules: Sealed Bid

• 1.First-price. Winner pays its own bid. Losers 
pay nothing. 

• 2.Second-price. Winner pays highest losing bid. 
Losers pay nothing. 
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Types of bidders: Private Value

• Food 

• Your valuation does not depend on others
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Type of bidders: Common Value

• Unproven field

• Object has same value to all bidders, but each 
only has an estimate of that common value
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“Auctions in Disguise”

• Many interactions have the hallmarks of an 
auction:
– There is a prize
– Prize has value 
– Each party makes a bidwhere highest bidder gets 

prize
– Bidding has a cost, where higher bids don’t cost 

less
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Hiring Decision

•  McKinsey and Charles River are trying to 
recruit Sven

•  Whoever makes the highest wage offer 
will get Sven

•  What type of bidders?

•  What type of rules?
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Labor Dispute

•  Labor and management have a dispute      
over new work rules

•  Work stops until some side gives in

•  What type of bidders?

•  What type of rules?
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Promotion Tournament

• Amande and Mertare contenders to become 
the firm’s next CEO

• Whoever spends the most weekends in the 
office gets the job

• What type of bidders?

• What type of rules?
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Competitive Negotiation

• Boeing and Airbus are each trying to get 
Iberia’s business

• Iberia’s CFO forces the two firms to continue 
beating each other’s best offers and 
counteroffers until someone gives up

• What type of bidders?

• What type of rules?



Digression: Order Statistics

Let ṽ ≡ (ṽ1, ..., ṽn) be a random vector, with ṽi ∼ F (v) with
continuous and positive density function f (v) and support [0, 1] .
ṽi ∼ F (v) means that

Pr (ṽi ≤ v) = Pr (ṽi < v) = F (v) .

The first order statistics of n independent random variables
(ṽ1, ..., ṽn) is denoted by ṽ(1). The CDF of ṽ(1) is

F(1) (v) = Pr
(

ṽ(1) ≤ v
)

= Πn
i=1 Pr (ṽi ≤ v) = F (v)n

Graph of how F(1) (v) changes with n.
The PDF of ṽ(1) is thus

f(1) (v) = nF (v)n−1 f (v) .
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Digression: Order Statistics

The second order statistics of n independent random variables
(ṽ1, ..., ṽn) is denoted by ṽ(2). The CDF of ṽ(2) is

F(2) (v) = Pr
(

ṽ(2) ≤ v
)

= Pr (vi ≤ v for all i)
+ Pr

((
ṽi > v, ṽj ≤ v for all j 6= i

)
, for i = 1, ..., n

)
= F (v)n + nF (v)n−1 [1− F (v)]

= F (v)n + n
[
F (v)n−1 − F (v)n

]
The PDF of ṽ(2) is thus

f(2) (v) = nF (v)n−1 f (v) + n
[
(n− 1) F (v)n−2 − nF (v)n−1

]
f (v)

= n (n− 1) F (v)n−2 [1− F (v)] f (v)
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Digression: Order Statistics

It is also useful to denote a random variable

ỹ = max {ṽ2, ..., ṽn}

as the max of n− 1 independent drawings from CDF F (·) .
The random variable ỹ is useful because to bidder 1, ỹ is the max of
the values of the other bidders.

Let G (y) denote the CDF of ỹ :

G (y) = F (y)n−1

g (y) = (n− 1) F (y)n−1 f (y) .
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Uniform Example

F (v) = v and f (v) = 1 for v ∈ [0, 1] ;
E [ṽi] = 1

2 ;
The first order statistics of a sample of size n, ṽ(1), has

F(1) (v) = vn

f(1) (v) = nvn−1

and

Eṽ(1) =
∫ 1

0
v
[
nvn−1

]
dv =

n
n + 1

vn+1
∣∣∣∣1
0

=
n

n + 1
,

which is increasing in n and approaches 1 as n→ ∞.
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Uniform Example
The second order statistics of a sample of size n, ṽ(2), has

f(2) (v) = n (n− 1) F (v)n−2 [1− F (v)] f (v)

= n (n− 1) vn−2 (1− v)

Eṽ(2) =
∫ 1

0
v
[
n (n− 1) vn−2 (1− v)

]
dv

= n (n− 1)
∫ 1

0

(
vn−1 − vn

)
dv

= n (n− 1)

[
vn

n
− vn+1

n + 1

∣∣∣∣1
0

]

= n (n− 1)
(

1
n
− 1

n + 1

)
=

n− 1
n + 1

.

Because we earlier showed that the seller’s expected revenue from
SPA is:

RSPA = Eṽ(2) =
n− 1
n + 1

.
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Model

1 seller (auctioneer), N buyers (bidders)

The seller has one good which has zero value to her.

Bidder i has valuation vi 2 [0; 1], where vi has CDF
Fi and density fi.

Key assumption: private values: the vi are indepen-

dent across bidders.

One could have assumed common values.

The density functions are common knowledge.

Let the sale price be p. If i wins the object he gets

payo� vi � p. If he loses, he gets zero.
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1. First Price

For the �rst-price auction, assume that f1 = ::: =

fN = f .

Format:

� Each i submits bi � 0.

� The player with the highest bi gets the object
and pays bi.

Strategy: bidding function bi (vi) :

Assume there exists an equilibrium where:

1. For every agent, bi (�) is the same. Call it b̂ (�)

2. The bid function b̂ (�) is strictly increasing
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In such an equilibrium:

� Bidder i wins i� b̂ (vi) > b̂
�
vj
�
for all j 6= i

(disregard ties, as they happen with zero prob-

ability)

� b̂ (vi) > b̂
�
vj
�
i� vi > vj.

� A deviation by i is bi 6= b̂ (vi) and we can �nd

b̂ (r) = bi.

� We can think of a deviation as \pretending to
be type r rather than type v:"

� The probability that i wins the object in a de-
viation is

Pr
�
vj < r for all j 6= i

�
= F (r)N�1
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Payo� of a bidder with valuation v who behaves as

bidder with valuation r:

u (r; v) = (F (r))N�1
�
v � b̂ (r)

�
;

No deviation is pro�table if

u (v; v; ) = max
r
(r; v) ;

which yields the necessary �rst-order condition:

@

@r
u (r; v)

����
r=v

= 0:

or

(N � 1) (F (v))N�2 f (v) b̂ (v) + (F (v))N�1 b̂0 (v)
= (N � 1) vf (v) (F (v))N�2 :

Left hand side: marginal cost. Right hand side:

marginal bene�t.

The left hand-side can be re-written as

d

dv

�
(F (v))N�1 b̂ (v)

�
Solve the di�erential equation:

(F (v))N�1 b̂ (v) = (N � 1)
Z v
0
xf (x) (F (x))N�2 dx+k:
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But k = 0 because b̂ (0) = 0.

b̂ (v) =
N � 1

(F (v))N�1

Z v
0
xf (x) (F (x))N�2 dx

=
1

(F (v))N�1

Z v
0
xd
�
(F (x))N�1

�
:

As we assumed, the bid function is strictly increasing

in v.

(This is not a complete proof because we only looked

a �rst-order conditions).

Proposition 4 The �rst-price auction has a sym-

metric equilibrium in which

b̂ (v) =
1

(F (v))N�1

Z v
0
xd
�
(F (x))N�1

�
:

Bidder i bids the expected valuation of the second-

highest bidder conditional on i having the highest

valuation.
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Example: Suppose v is uniformly distributed: F (v) =

v.

b̂ (v) =
1

vN�1

Z v
0
xdxN�1

=
N � 1
vN�1

Z v
0
xN�1dx

=
N � 1
NvN�1

vN

=
N � 1
N

v:

1. Bidders shade their bid.

2. Shading decreases as N goes up.
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2. Dutch Auction

The price p starts at 1 and decreases continuously

over time.

When a bidders says \stop", the auction ends. That

bidder gets the object and pays price p.

A strategy is a price pi (vi) at which the bidder says

\stop".

This game is strategically equivalent to the �rst-

price auction.

Proposition 1 applies.
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3. Second-Price Auction

Go back to the general model with fi.

Format:

� Each i submits bi � 0.

� The player with the highest bi gets the object
and pays the second-highest bid.

Proposition 5 bi (vi) = vi is the unique weakly dom-

inant bidding strategy for each bidder.

Proof. Consider bidder i. Let b�i be the vector of
bids of the other players and B the highest bid by

another player.

Player i gets payo�

ui (bi; B) =

(
0 if bi < B
vi �B if bi > B

:
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He prefers vi �B if vi > B.

By bidding bi = vi, he ensures that he always gets

the maximum payo�: 0 if bi = vi < B, and vi � B
if bi = vi > B.

Therefore bi (vi) = vi is a weakly dominant strategy.

To check that it is the only weakly dominant strat-

egy, suppose i uses a strategy ~bi that is di�erent

from bi (vi) = vi for some vi.

If ~bi (vi) > vi, we can �nd B 2
�
vi;~bi (vi)

�
such

that the payo� is negative, while it is zero with

bi (vi) = vi:

If ~bi (vi) < vi, we can �nd B 2
�
~bi (vi) ; vi

�
such

that the payo� is zero, while it is strictly positive

with bi (vi) = vi:
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4. English Auction

Format (slightly di�erent from Sotheby's):

� The price p increases continuously over time.

� Bidder i can drop out of the auction anytime.

� When the second-last player drops, the last player
wins the object and pays the price at the mo-

ment in which the second-last dropped out.

The parallel English-Second is not as straightforward

as Dutch-First.

The two formats are not strategically equivalent. In

the English Auction, player i learns that some play-

ers have dropped. This gives him information about

their type.

But...
41



Proposition 6 The unique weakly dominant strat-

egy is to drop out when p = vi.

Proof. Suppose i drops out when p < vi. If all

remaining players drop out before p reaches vi, he

gets a strictly lower payo� than the one he would

have gotten if he waited.

Suppose i does not stay on after p reaches vi. If all

remaining players drop out, he receives a negative

payo�.
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Revenue Comparison

First = Dutch

Second = English

First 7 Second?
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1. Revenue in First Price

R1 =
Z 1
0
b̂ (v) g (v) dv;

where g (v) is the density function of vmax =

max fv1; :::; vNg. As

Pr (vmax � v) = (F (v))N ;

we have

g (v) =
d

dv
(F (v))N = Nf (v) (F (v))N�1 :

Hence

R1

= N

Z 1

0

1

(F (v))N�1

�Z v

0

xd
�
(F (x))N�1

��
f (v) (F (v))N�1 dv

= N

Z 1

0

Z v

0

xd
�
(F (x))N�1

�
f (v) dv

= N (N � 1)
Z 1

0

Z v

0

xf (x) (F (x))N�2 f (v) dxdv

= N (N � 1)
Z 1

0

Z 1

x

xf (x) (F (x))N�2 f (v) dvdx

= N (N � 1)
Z 1

0

xf (x) (F (x))N�2 (1� F (x)) dx:
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2. Revenue in Second Price

R2 =
Z 1
0
b̂ (v)h (v) dv;

where h (v) is the density function of the second-

highest element vsecond of fv1; :::; vNg. Note
that

Pr
�
v(2) � v

�
= (F (v))N+N (F (v))N�1 (1� F (v)) ;

and

h (v) = N (N � 1) (F (v))N�2 f (v) (1� F (v)) :

Hence,

R2 = N (N � 1)
Z 1
0
v (F (v))N�2 f (v) (1� F (v)) dv:

We see that R1 = R2:

Proposition 7 The auctioneer's expected revenue is

the same in the four auction formats.

Coincidence?
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The Revenue Equivalence Theorem

Direct selling mechanism:

� Probability assignment functions: chance that i
gets the object given a vector of reported values

p1 (v1; ::; vN) ; :::; pN (v1; ::; vN) ;

such that
P
i pi � 1 (the auctioneer could keep

the object).

� Cost functions: cost paid by bidder i given a
vector of reported values (he may pay even if

he does not get the object):

c1 (v1; ::; vN) ; :::; cN (v1; ::; vN) :

The cost could be negative, ie the auctioneer

pays the bidder.
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The equilibria we have considered in the four for-

mats have corresponding equilibria in direct selling

mechanisms.

1. First-Price, Dutch:

pi (v1; ::; vN) =

(
1 if vi > vj for all j 6= i
0 otherwise

)

ci (v1; ::; vN) =

(
b̂ (vi) if vi > vj for all j 6= i
0 otherwise

)
Easy to check: truth telling is an equilibrium of

this direct mechanism.

2. Second-Price, English: Same assignment func-

tion as First Price and

ci (v1; ::; vN) =

(
b̂ (vsecond) if vi > vj for all j 6= i
0 otherwise

)
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For ri 2 [0; 1], de�ne:

�pi (ri) =
Z 1
0
::
Z 1
0
pi (ri; v�i) f�i (v�i) dv�i;

�ci (ri) =
Z 1
0
::
Z 1
0
ci (ri; v�i) f�i (v�i) dv�i:

Then,

ui (ri; vi) = �pi (ri) vi � �ci (ri) :

A direct mechanism is incentive compatible if

ui (vi; vi) � ui (ri; vi) 8i8ri8vi:

Proposition 8 A direct mechanism is incentive-compatible

if and only if

1. �pi (vi) is non-decreasing in vi:

2. �ci can be written as

�ci (vi) = �ci (0) + �pi (vi) vi �
Z vi
0
�pi (x) dx:
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Sketch of Proof. For (1), take v0 < v00 and sup-
pose that �pi

�
v0
�
> �pi

�
v00
�
. Incentive compatibility

implies:

ui
�
v0; v0

�
� ui

�
v00; v0

�
;

ui
�
v00; v00

�
� ui

�
v0; v00

�
:

Sum the two inequalities

ui
�
v0; v0

�
+ ui

�
v00; v00

�
� ui

�
v00; v0

�
+ ui

�
v0; v00

�
That is

�pi
�
v0
�
v0 + �pi

�
v00
�
v00 � �pi

�
v0
�
v00 + �pi

�
v00
�
v0:

which re-writes as�
�pi
�
v00
�
� �pi

�
v0
�� �

v00 � v0
�
� 0;

which is a contradiction because v0 < v00 and �pi
�
v0
�
>

�pi
�
v00
�
:

For (2), note that incentive compatibility implies the

�rst-order condition

d

dr
ui (r; v)

����
r=v

= 0 8v:
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We have
d

dr
ui (r; v) = �p0i (r) v � �c0i (r)

Hence

�c0i (v) = �p0i (v) v 8v:
Integrating both sides

�ci (v)� �ci (0) =
expected bene�tz }| {

�pi (v) v �

rentz }| {Z v
0
�pi (x) dx;

which corresponds to (2).

To interpret (2), go back to mechanism design and
think of downward local IC constraints:

t̂i = t̂i�1+u1 (x̂i; �i)�u1 (x̂i�1; �i) for i = 1; :::; n

Hence

t̂i = u1 (x̂i; �i)� u1 (x̂i�1; �i)
+u1 (x̂i�1; �i�1)� u1 (x̂i�2; �i�1)
+:::

= u1 (x̂i; �i)

� (u1 (x̂i�1; �i)� u1 (x̂i�1; �i�1))
�:::

= u1 (x̂i; �i)�
i�1X
k=1

�
u1
�
x̂i�k; �i�k+1

�
� u1

�
x̂i�k; �i�k

��
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Theorem 9 (Revenue Equivalence) If two incentive-

compatible direct selling mechanisms have the same

probability assignment functions and every bidder

with valuation zero is indi�erent between the two

mechanisms, then the two mechanisms generate the

same expected revenue.

Proof. As the v's are independent, the expected

revenue can be written as

R

=
NX
i=1

Z 1
0
�ci (vi) fi (vi) dvi

=
NX
i=1

Z 1
0

�
�ci (0) + �pi (vi) vi �

Z vi
0
�pi (x) dx

�
fi (vi) dvi

=
NX
i=1

�ci (0) +
NX
i=1

Z 1
0

�
�pi (vi) vi �

Z vi
0
�pi (x) dx

�
fi (vi) dvi:

The revenue depends only on �ci (0) and �pi, not on

�ci (vi).

We can now add new formats to the list. See exer-

cise.
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E�ciency

The four formats have the same p.

They allocate the object to the bidder with the high-

est valuation.

E�cient.

Trade-o� between e�ciency and revenue maxima-

tion:

� The auctioneer can increase expected revenue
by setting a reserve price.

� A reserve price mis-allocates the object with

positive probability.
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Reserve Price in Second-Price
Auction

The auctioneer uses a second-price auction with re-

serve price r � 0. If all the bids are below r, the

auctioneer keeps the object (for which she has zero

utility).

Proposition 10 The optimal reserve price is strictly

greater than zero.

As before, h (v) is the density function of the second-

highest element vsecond of fv1; :::; vNg.

The expected revenue is

R2 =
Z 1
r
b̂ (v)h (v) dv + r Pr

�
vsecond < r; v�rst > r

�
= N (N � 1)

Z 1
r
v (F (v))N�2 f (v) (1� F (v)) dv

+rN (F (r))N�1 (1� F (r))
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Take derivatives:

dR2
dr

= �N (N � 1) r (F (r))N�2 f (r) (1� F (r))

+N (N � 1) r (F (r))N�2 f (r) (1� F (r))
�rN (N � 1) (F (r))N�1 f (r)
+N (F (r))N�1 (1� F (r))

and

dR2
dr

���
r

(F (r))N�1
= �rN (N � 1) f (r) +N (1� F (r))

Then

lim
r!0+

dR2
dr

���
r

(F (r))N�1
= N > 0

For r small enough, dR2dr

���
r
is positive and a higher r

increases the auctioneer's expected revenue.
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Common Values

So far, we have assumed that valuations are inde-

pently distributed.

But think of auctions for

� Oil �elds

� New issues of securities

� Spectrum (UMTS)

� Any object which could be re-sold (paintings,
cars, etc).

Values are then interdependent.
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Let us look at the most extreme case: the value is

the same for every player (but still stochastic):

v1 = ::: = vn = v

and v has density f and CDF F on [0; 1]

Buyer i observes signal yi with distribution g (yijv).
Assume that the y's are independent across buyers

conditional on v.

Restrict attention to second-price auctions.

Is the equilibrium of the game

bi (yi) = E [vjyi]? (4)

No. A buyer who bids E [xjyi] is paying too much
on average.

To see this, suppose everybody bids according to

the naive strategy in (4). If i wins, it means that

E [vjyi] = max (E [vjy1] ; :::; E [vjyn])
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equivalent to

yi = max (y1; :::; yn)

But then

E [vjy1; :::; yn] < E [vjyi]

If i had known what the others know he would have

bid less. This is the winner's curse.

In equilibrium, rational bidders are not subject to

the winner's curse because they do not use a naive

strategy.

The equilibrium strategy is the sophisticated bid

function:

~bi (yi) = E

"
vjyi; yi = max

j 6=i
yj

#
;

i.e. a buyer conditions his bid on the event his bid

is equal to the second-highest bid.

Are bidders rational? Experimental evidence (Kagel

and Levin 1986): both naive and strategic bidding.

57



Information Provision and Revenue
Maximization

Should the auctioneer allow bidders to get more in-

formation about the object for sale?

Example: provide an independent expert report.

Suppose the cost of information provision is zero

Milgrom-Weber (Econometrica 1982)

Theorem 11 In symmetric environments, if the auc-

tioneer uses a �rst- or second-price auction the best

reporting policy is full disclosure.

In our example:

Suppose the auctioneer chooses between: (1) let-

ting bidders know only yi; (2) providing them with

perfect information (they learn v).

With (2), the bid is simply bi = v and each buyer

gets zero expected payo�.
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Which Format?

With common values, the Revenue Equivalence The-

orem does not hold.

It is still true that First = Dutch, but

Milgrom-Weber prove:

� English > Second Price.

Intuition: The sequential format provides more

info.

� Second Price > First Price (if bidders are risk-

neutral):

Intuition: reduce winner's curse

59




