The Theory of the Firm

Zonglai KOU
Fudan University

May, 2007

1 Introduction

- Black-box approach to the firm in neoclassical economics

The hierarchy within firm is neglected to focus on the inter-firm competitions. However, coporate governance is very important because either adverse selection or moral hazard problem will arise when there is informational asymmetry between Principal and Agent.

One interesting direction is to discuss the effect of corporate governance on the performance at industrial level.

- A firm is a technical unit in which commodities are produced. When there is only one output, we can define a production function; when there are more than one outputs, we can define a correspondence.
- Short-term or long-term: whether one or more than one inputs are invariant in the period?
- The similarity between the theory of consumption and the theory of the firm

A consumer purchases commodities wiht which he "produces" satisfaction; An entrepreneur purchases inputs with which he produces commodities.

The consumer's budget equation is a linear function of the amounts of commodities he purchases; the competitive firm's cost equation is a linear function of the amounts of inputs it purchases.

- The difference between the theory of consumption and the theory of the firm

Utility function is subjective; Production function is objective. The rational consumer maximizes utility for a given income; but the entrepreneur often considers his cost variable.

2 Productio Set

A production vector is a vector $y=\left(y_{1}, y_{2}, \ldots y_{L}\right) \in R^{L}$ that describes the (net) outputs of the L commodities from a production process.

- Example: Suppose $L=5$. Then $y=(-5,2 .-6,3,0)$ is a production vector.

The set of all production vectors that constitute feasible plans for the firm is known as the production set and is denoted by $Y \in R^{L}$, any $y \in Y$ is possible, and any $y \notin Y$ is not.

- Properties of the production sets

1. Y is nonempty
2. Y is closed. The set Y includes its boundary. $y^{n} \rightarrow y$, and $y^{n} \in Y$ implies $y \in Y$.
3. No free lunch. At least one term in y is negative.
4. Possibility of inaction. That is, $0 \in Y$. But this is not the case when there is Sunk Cost.
5. Free disposal. $Y-R_{+}^{L} \subset Y$.
6. Irreversibility. Suppose that $y \in Y$, and $y \neq 0$. Then, $-y \notin Y$.
7. Nonincreasing returns to scale: if for any $y \in Y$, we have $\alpha y \in Y$ for all $\alpha \in[0,1]$.
8. Nondecreasing returns to scale: if for any $y \in Y$, we have $\alpha y \in Y$ for all $\alpha \geq 1$.
9. Nondecreasing returns to scale: if for any $y \in Y$, we have $\alpha y \in Y$ for any $\alpha>0$.
10. Additivity (or free entry). Suppose that $y \in Y$ and $y \in Y$, then additivity requires taht $y+y^{\prime} \in Y$.
11. Convexity. This one of the fundamental assumptions of microeconomics. That is, if $y, y^{\prime} \in Y$ and $\alpha \in[0,1]$, then $\alpha y+(1-\alpha) y^{\prime} \in Y$.

3 The Production Function

$$
\begin{equation*}
q=f\left(x_{1}, x_{2}\right) \tag{1}
\end{equation*}
$$

where (1) is assumed to be a single-valued contrinuous functin with continuous first- and second-order derivatives; $f_{i}>0, f_{i i}<0, f_{i j}>0$ in most cases.

Remark 1: The production function differs from the technolgoy in that it presupposes technoical efficiency and states the maximum output abtainable from every possible input combination.

Remark 2: The best utilization of any particular input combination is a technical, not an economic, problem.

- Product Curves

By fixing factor $x_{2}=x_{2}^{0}$, we obtain the relationship between q and x_{1} :

$$
\begin{equation*}
q=f\left(x_{1}, x_{2}^{0}\right) \tag{2}
\end{equation*}
$$

- Average product

$$
\begin{equation*}
A P=\frac{q}{x_{1}}=\frac{f\left(x_{1}, x_{2}^{0}\right)}{x_{1}} \tag{3}
\end{equation*}
$$

- Marginal product

$$
\begin{equation*}
M P=\frac{\partial q}{\partial x_{1}}=f_{1}\left(x_{1}, x_{2}^{0}\right) \tag{4}
\end{equation*}
$$

- The Output Elasticity of X_{1}

$$
\begin{equation*}
\omega_{1}=\frac{\partial(\ln q)}{\partial\left(\ln x_{1}\right)}=\frac{x_{1} \partial q}{q \partial x_{1}}=\frac{M P}{A P} \tag{5}
\end{equation*}
$$

- Isoquants

An isoquant is the locus of all cominations of x_{1} and x_{2} which yield a specified output level. For a given output level, (1) becomes

$$
\begin{equation*}
q_{0}=f\left(x_{1}, x_{2}\right) \tag{6}
\end{equation*}
$$

where q_{0} is a parameter.

- The rate of technical substitution (RTS)

$$
\begin{equation*}
R T S=-\frac{d x_{2}}{d x_{1}} \tag{7}
\end{equation*}
$$

- Economic sense: the slope of the tangent to a point on an isoquant is the rate at which x_{1} msut be substituted for x_{2} in order to maintain the corresponding output level. Totally differentiating the production function leads to

$$
\begin{equation*}
d q=f_{1} d x_{1}+f_{2} d x_{2}=0 \tag{8}
\end{equation*}
$$

where the last equality is satisfied when $q=q_{0}$. As a result, we obtain

$$
\begin{equation*}
R T S=-\frac{d x_{2}}{d x_{1}}=\frac{f_{1}}{f_{2}} \tag{9}
\end{equation*}
$$

that is, the RTS at a point equals the ratio of the MP of x_{1} to the MP x_{2} at that point.

- Excercise 1: Derive the RTS of Cobb-Douglas function $q=f\left(x_{1}, x_{2}\right)=$ $x_{1}^{\alpha}, x_{2}^{1-\alpha}$.
- Elasticity of Substitition

Elasticity of Substitition σ is a pure number that measures the rate at wihch substitution takes palce. It is defined as the proportionate rate of change of the inout ratio divided by the proportionate rate of change of the RTS

$$
\begin{equation*}
\sigma=\frac{\partial \ln \left(x_{2} / x_{1}\right)}{\partial \ln \left(f_{1} / f_{2}\right)}=\frac{f_{1} / f_{2}}{x_{2} / x_{1}} \frac{d\left(x_{2} / x_{1}\right)}{d\left(f_{1} / f_{2}\right)} \tag{10}
\end{equation*}
$$

- Excercise 2: Prove that the class of production functions given by $q=$ $A x_{1}^{\alpha} x_{2}^{\beta}$ with $\alpha, \beta>0$ has unit elasiticity of substitution, that is, $\sigma=1$.
- Excercise 3: Derive the elasticity of substitution of production function $q=B\left[\alpha x_{1}^{-\rho}+(1-\alpha) x_{2}^{-\rho}\right]^{-1 / \rho}$ with $\rho>-1$ and explain the economic meaning of parameter ρ. Hints: What is the relationship between ρ and σ, and what happens when ρ increases from -1 to infinite?

4 Optimizing Behavior

The entrepreneur purchases x_{1} and x_{2} in perfectly competitive market at constrant unit prices. His total cost of prouction (C) is given by the linear equation

$$
\begin{equation*}
C=r_{1} x_{1}+r_{2} x_{2}+b \tag{11}
\end{equation*}
$$

- Constrained Output Maximization: the entrepreneur maximizes his output subject to cost constraint that $C \leq C^{0}$:

$$
\begin{equation*}
\text { Lagrangian }=V=f\left(x_{1}, x_{2}\right)+\mu\left(C^{0}-r_{1} x_{1}-r_{2} x_{2}-b\right) \tag{12}
\end{equation*}
$$

- First order condtions (FOC)

$$
\begin{align*}
& \frac{\partial V}{\partial x_{1}}=f_{1}-\mu r_{1}=0 \tag{13}\\
& \frac{\partial V}{\partial x_{2}}=f_{2}-\mu r_{2}=0 \tag{14}\\
& \frac{\partial V}{\partial \mu}=C^{0}-r_{1} x_{1}-r_{2} x_{2}-b=0 \tag{15}
\end{align*}
$$

As a result, the ratio of the MPs of x_{1} and x_{2} must be equated with the ratio of their prices

$$
\frac{f_{1}}{f_{2}}=\frac{r_{1}}{r_{2}}
$$

and the contribution to output of the last dollar expended upon each input must equal μ,

$$
\begin{equation*}
\mu=\frac{f_{1}}{r_{1}}=\frac{f_{2}}{r_{2}} \tag{17}
\end{equation*}
$$

Furthermore,

$$
\begin{equation*}
R T S=\frac{r_{1}}{r_{2}} \tag{18}
\end{equation*}
$$

The second-order conditions rquire that the relevant bordered Hessian determinant be positive

$$
\left|\begin{array}{ccc}
f_{11} & f_{12} & -r_{1} \tag{19}\\
f_{21} & f_{22} & -r_{2} \\
-r_{1} & -r_{2} & 0
\end{array}\right|>0
$$

- Constrained Cost Minimization

$$
\begin{equation*}
\text { Lagrangian }=Z=r_{1} x_{1}+r_{2} x_{2}+\lambda f\left(x_{1}, x_{2}\right) \tag{20}
\end{equation*}
$$

$$
\begin{align*}
& \frac{\partial Z}{\partial x_{1}}=r_{1}-\lambda f_{1}=0 \tag{21}\\
& \frac{\partial V}{\partial x_{2}}=r_{2}-\lambda f_{2}=0 \tag{22}\\
& \frac{\partial V}{\partial \mu}=q^{0}-f\left(x_{1}, x_{2}\right)=0 \tag{23}
\end{align*}
$$

$r_{1} x_{1}+r_{2} x_{2}+b$ Similarly, we obtain

$$
\begin{equation*}
\frac{f_{1}}{f_{2}}=\frac{r_{1}}{r_{2}} \text { or } \frac{1}{\lambda}=\frac{f_{1}}{r_{1}}=\frac{f_{2}}{r_{2}} \text { or } R T S=\frac{r_{1}}{r_{2}} \tag{24}
\end{equation*}
$$

Now the second order condition requires taht the relevant bordered Hessian determinant be negative

$$
\left|\begin{array}{ccc}
-\lambda f_{11} & -\lambda f_{12} & -f_{1} \tag{25}\\
-\lambda f_{21} & -\lambda f_{22} & -f_{2} \\
-f_{1} & -f_{2} & 0
\end{array}\right|<0
$$

- Excercise 4: Prove that the SOC (19) is equivalent to the SOC (25).

If the production function is regular strictly quasi-concave, every point of tangency between an isoquant and an isocost line is the solution of both a constrainted-maximum and costrained-minimum problem.

- Expansion Path, i.e., the locus of tangency points, is defined by an implicit function of x_{1} and x_{2}

$$
\begin{equation*}
g\left(x_{1}, x_{2}\right)=0 \tag{26}
\end{equation*}
$$

- Excerise 5: Derive the expansion path of a Cobb-Douglas function.
- Profit maximization: Direct approach

Suppose that product price is exogenously given (what does it mean?), then the profit maximization problem is

$$
\begin{equation*}
\max _{x_{1}, x_{2}} \pi_{2} p f\left(x_{1}, x_{2}\right)-\left(r_{1} x_{1}+r_{2} x_{2}+b\right) \tag{27}
\end{equation*}
$$

FOCs

$$
\begin{align*}
\frac{\partial \pi}{\partial x_{1}} & =p f_{1}-r_{1}=0 \tag{28}\\
\frac{\partial \pi}{\partial x_{2}} & =p f_{2}-r_{2}=0 \\
\frac{f_{1}}{r_{1}} & =\frac{f_{2}}{r_{2}}
\end{align*}
$$

Second order condtions require that the principal minors of the relevant Hessian determinant alternate in sign:

$$
\begin{equation*}
\frac{\partial^{2} \pi}{\partial x_{1}^{2}}=p f_{11}<0 ; \frac{\partial^{2} \pi}{\partial x_{2}^{2}}=p f_{22}<0 \tag{29}
\end{equation*}
$$

$$
\left|\begin{array}{cc}
\frac{\partial^{2} \pi}{\partial x_{1}^{2}} & \frac{\partial^{2} \pi}{\partial x_{1} \partial x_{2}} \tag{30}\\
\frac{\partial^{2} \pi}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} \pi}{\partial x_{2}^{2}}
\end{array}\right|=p^{2}\left|\begin{array}{ll}
f_{11} & f_{12} \\
f_{21} & f_{22}
\end{array}\right|>0
$$

SOC (29) and (30) reqire that the production function be strictly concave in the neighborhood of a point at which the first-order are satisified with $x_{1}, x_{2} \geq 0$ if such a point exists.

5 Input Demands

- Input Demand Functions

The producer's input demands are derived from the underlying demand for the commodity which he produces. His input demand functions are obatined by sovling his firt-order conditons (28) for x_{1} and x_{2} as functions of $\mathrm{r} x_{1}, x_{2}$ and p.

Consider production function $q=A x_{1}^{\alpha} x_{2}^{\beta}$ with $\alpha, \beta>0$ and $\alpha+\beta<1$.

$$
\begin{equation*}
\pi=p A x_{1}^{\alpha} x_{2}^{\beta}-\left(r_{1} x_{1}+r_{2} x_{2}\right) \tag{31}
\end{equation*}
$$

The first order conditions are as follows:

$$
\begin{align*}
& \frac{\partial \pi}{\partial x_{1}}=p \alpha A x_{1}^{\alpha-1} x_{2}^{\beta}-r_{1}=0 \tag{32}\\
& \frac{\partial \pi}{\partial x_{2}}=p \beta A x_{1}^{\alpha} x_{2}^{\beta-1}-r_{2}=0
\end{align*}
$$

- Excercise 6: Prove that the input demand functions in this case are as follows:

$$
\begin{align*}
& x_{1}=\left(\frac{\alpha}{r_{1}}\right)^{(1-\beta) / \gamma}\left(\frac{\beta}{r_{2}}\right)^{\beta / \gamma}(A p)^{1 / \gamma} \tag{33}\\
& x_{2}=\left(\frac{\alpha}{r_{1}}\right)^{\alpha / \gamma}\left(\frac{\beta}{r_{2}}\right)^{(1-\alpha) / \gamma}(A p)^{1 / \gamma} \tag{34}
\end{align*}
$$

where $\gamma=1-\alpha-\beta$.

- Comparative statics analysis

How the input demands change with product price p and input prices r_{1} and r_{2} ?

Differentiating (32) totally and reagrranging terms,

$$
\begin{align*}
& p f_{11} d x_{1}+p f_{12} d x_{2}=-f_{1 d p}+d r_{1} \tag{355}\\
& p f_{21} d x_{1}+p f_{22} d x_{2}=-f_{2 d p}+d r_{2} \tag{36}
\end{align*}
$$

Solving (35) for $d x_{1}$ and $d x_{2}$ by Cramer's rule,

$$
\begin{align*}
d x_{1} & =\frac{1}{p H}\left[f_{22} d r_{1}-f_{12} d r_{2}+\left(f_{12} f_{2}-f_{22} f_{1}\right) d p\right] \tag{37}\\
d x_{2} & =\frac{1}{p H}\left[-f_{21} d r_{1}+f_{11} d r_{2}+\left(f_{21} f_{1}-f_{11} f_{2}\right) d p\right]
\end{align*}
$$

where

$$
H=\left|\begin{array}{ll}
f_{11} & f_{12} \tag{38}\\
f_{21} & f_{22}
\end{array}\right|>0
$$

Dividing both sides of the first equation of (37) by $d r_{1}$ and letting $d r_{2}=d p=$ 0 ,

$$
\begin{equation*}
\frac{\partial x_{1}}{\partial r_{1}}=\frac{f_{22}}{p H}<0 \tag{39}
\end{equation*}
$$

Remark: Ceteris paribus, the rate of change of the producer's purchase of x_{1} with respect to changes inits own price is always negative, and the producer's input demand curves are always downward sloping. Here there is only a substitution effect. There is no counterpart for the income effect of the consumer in the theory of the profit-maximizing producer because he does not face a cost budget!

Dividing both sides of the first equation of (37) by $d r_{2}$ and letting $d r_{1}=d p=$ 0 ,

$$
\begin{equation*}
\frac{\partial x_{1}}{\partial r_{2}}=-\frac{f_{12}}{p H} \tag{40}
\end{equation*}
$$

In usual cases, $f_{12}>0$. Therefore, an increase in one input prie normally will reduce the suage the other input

Dividing both sides of the first equation of (37) by $d p$ and letting $d r_{1}=d r_{2}=$ 0 ,

$$
\begin{equation*}
\frac{\partial x_{1}}{\partial p}=-\frac{\left(f_{12} f_{2}-f_{22} f_{1}\right)}{p H} \tag{41}
\end{equation*}
$$

- An application of the Le Chaterlier Principle

The profit function for the n-input case is

$$
\begin{equation*}
\max \pi=f\left(x_{1}, x_{2}\right)-\sum_{i=1}^{n} r_{i} x_{i} \tag{42}
\end{equation*}
$$

The Le Chaterlier Principle states that

$$
\begin{equation*}
\left(\frac{\partial x_{i}^{*}}{\partial r_{i}}\right)_{0} \leq\left(\frac{\partial x_{i}^{*}}{\partial r_{i}}\right)_{1} \leq \ldots \leq\left(\frac{\partial x_{i}^{*}}{\partial r_{i}}\right)_{n-1}, i=1, \ldots, n \tag{43}
\end{equation*}
$$

where the subscript outside the parenthteses desginates that the number of additional constgraints that have been appenned to the maximizaiton of (42).

The subscript 0 denotes unconstrained optimiazation, 1 denotes a case in which (42) is maximized subject to one constraint, and so on. The constraints are constructed so that x_{i}^{*} are optimal regardless of the number of constraints.

The abosolute value of demand reduction following a price increase cannot be increased as additional cosntraints are indtroduced, and may be decreased.

Intuitive explantion: $f_{i j} \geq 0$.

- Excercise 7: Prove Le Chatelier Principle with $n=2$.

6 Cost Function

$$
\begin{gather*}
\operatorname{Min} \sum_{i=1}^{n} r_{i} x_{i} \tag{44}\\
\text { s.t. } q=f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
\text { Lagrangian }=L=\sum_{i=1}^{n} r_{i} x_{i}+\zeta\left(q-f\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right) \tag{45}
\end{gather*}
$$

First-order conditions

$$
\begin{align*}
r_{i} & \left.=\zeta f_{i}\left(x_{1}, x_{2}, . x_{i} . ., x_{n}\right)\right), \text { for } i=1,2, . ., n \tag{46}\\
q & =f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \tag{47}
\end{align*}
$$

As a result

$$
\begin{equation*}
x_{i}^{*}=x_{i}^{*}\left(r_{1}, r_{2}, \ldots, r_{n}\right) \tag{48}
\end{equation*}
$$

$$
\begin{equation*}
\Phi\left(q, r_{1}, r_{2} \ldots r_{n}\right)=\sum_{i=1}^{n} r_{i} x_{i}^{*}+\zeta\left(q-f\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{n}^{*}\right)\right) \tag{49}
\end{equation*}
$$

- The properties of cost function $\Phi\left(q, r_{1}, r_{2}\right)$ with regard to the input prices

1. Nondecreasing

Proof: If one or more input prices increase and those inputs are used at positive levels, it is necessary to move to a higher isocost line to secure any specified output.
2. Homogeneity of degree one
3. Concavity

Proof: We prove a special case with $n=2$. For a specified output let $\left(r_{1}^{0}, r_{2}^{0}, x_{1}^{0}, x_{2}^{0}\right)$ and ($r_{1}^{1}, r_{2}^{1}, x_{1}^{1}, x_{2}^{1}$) denote two cost-minimizing solutions. Let $r_{i}^{2}=\lambda r_{i}^{0}+(1-\lambda) r_{i}^{1}(i=1,2)$. By cost minimization

$$
\begin{align*}
& r_{1}^{0} x_{1}^{2}+r_{2}^{0} x_{2}^{2} \geq \Phi\left(q, r_{1}^{0}, r_{2}^{0}\right)=r_{1}^{0} x_{1}^{0}+r_{2}^{0} x_{2}^{0} \tag{50}\\
& r_{1}^{1} x_{1}^{2}+r_{2}^{1} x_{2}^{2} \geq \Phi\left(q, r_{1}^{1}, r_{2}^{1}\right)=r_{1}^{1} x_{1}^{1}+r_{2}^{1} x_{2}^{1} \tag{51}
\end{align*}
$$

Consequently, (50) times λ plus (51) times λ leads to $\Phi\left(q, r_{1}^{2}, r_{2}^{2}\right) \geq \lambda \Phi\left(q, r_{1}^{0}, r_{2}^{0}\right)+(1-\lambda) \Phi\left(q, r_{1}^{1}, r_{2}^{1}\right)$.
Q.E.D
4. Shepherd Lemma: $x_{i}^{*}=\frac{\partial}{\partial r_{i}} \Phi\left(q, r_{1}, r_{2}, \ldots\right)$

Proof: By (49),

$$
\begin{align*}
\frac{\partial \Phi(., . .)}{\partial r_{i}} & =x_{i}^{*}(.)+\sum_{k=1}^{n} \underbrace{\left(r_{k}-\zeta f_{k}\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{n}^{*}\right)\right)}_{=0} \frac{\partial x_{k}^{*}}{\partial r_{i}} \tag{52}\\
& =x_{i}^{*}(.)
\end{align*}
$$

