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1. INTRODUCTION

1 Introduction

� Black-box approach to the �rm in neoclassical economics

The hierarchy within �rm is neglected to focus on the inter-�rm competitions.
However, coporate governance is very important because either adverse selec-
tion or moral hazard problem will arise when there is informational asymmetry
between Principal and Agent.

One interesting direction is to discuss the e¤ect of corporate governance on the
performance at industrial level.

� A �rm is a technical unit in which commodities are produced. When there
is only one output, we can de�ne a production function; when there are
more than one outputs, we can de�ne a correspondence.
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1. INTRODUCTION

� Short-term or long-term: whether one or more than one inputs are invariant
in the period?

� The similarity between the theory of consumption and the theory of the
�rm

A consumer purchases commodities wiht which he "produces" satisfaction; An
entrepreneur purchases inputs with which he produces commodities.

The consumer�s budget equation is a linear function of the amounts of com-
modities he purchases; the competitive �rm�s cost equation is a linear function
of the amounts of inputs it purchases.
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1. INTRODUCTION

� The di¤erence between the theory of consumption and the theory of the
�rm

Utility function is subjective; Production function is objective. The rational
consumer maximizes utility for a given income; but the entrepreneur often
considers his cost variable.
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2. PRODUCTION SET

2 Production Set

A production vector is a vector y = (y1; y2; :::yL) 2 RL that describes the
(net) outputs of the L commodities from a production process.

� Example: Suppose L=5. Then y=(-5,2.-6,3,0) is a production vector.

The set of all production vectors that constitute feasible plans for the �rm is
known as the production set and is denoted by Y 2 RL; any y 2 Y is possible,
and any y =2 Y is not.

� Properties of the production sets

5



2. PRODUCTION SET

1. Y is nonempty

2. Y is closed. The set Y includes its boundary. yn ! y; and yn 2 Y implies
y 2 Y:

3. No free lunch. At least one term in y is negative.

4. Possibility of inaction. That is, 0 2 Y: But this is not the case when there
is Sunk Cost.

5. Free disposal. Y �RL+ � Y:

6. Irreversibility. Suppose that y 2 Y; and y 6= 0: Then, �y =2 Y .
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2. PRODUCTION SET

7. Nonincreasing returns to scale: if for any y 2 Y; we have �y 2 Y for all
� 2 [0; 1]:

8. Nondecreasing returns to scale: if for any y 2 Y; we have �y 2 Y for all
� � 1:

9. Nondecreasing returns to scale: if for any y 2 Y; we have �y 2 Y for any
� > 0:

10. Additivity (or free entry). Suppose that y 2 Y and y 2 Y , then additivity
requires taht y + y0 2 Y:

11. Convexity. This one of the fundamental assumptions of microeconomics.
That is, if y; y0 2 Y and � 2 [0; 1]; then �y + (1� �)y0 2 Y:
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3. THE PRODUCTION FUNCTION

3 The Production Function

q = f(x1; x2) (1)

where (1) is assumed to be a single-valued contrinuous functin with continuous
�rst- and second-order derivatives; fi > 0 , fii < 0; fij > 0 in most cases.

Remark 1: The production function di¤ers from the technolgoy in that it pre-
supposes technoical e¢ ciency and states the maximum output abtainable from
every possible input combination.

Remark 2: The best utilization of any particular input combination is a technical,
not an economic, problem.
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3. THE PRODUCTION FUNCTION

� Product Curves

By �xing factor x2 = x02; we obtain the relationship between q and x1 :

q = f(x1; x
0
2) (2)

� Average product

AP =
q

x1
=
f(x1; x

0
2)

x1
(3)
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3. THE PRODUCTION FUNCTION

� Marginal product

MP =
@q

@x1
= f1(x1; x

0
2) (4)

� The Output Elasticity of X1

!1 =
@(ln q)

@(lnx1)
=
x1@q

q@x1
=
MP

AP
(5)

� Isoquants
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3. THE PRODUCTION FUNCTION

An isoquant is the locus of all cominations of x1 and x2 which yield a speci�ed
output level. For a given output level, (1) becomes

q0 = f(x1; x2) (6)

where q0 is a parameter.

� The rate of technical substitution (RTS)

RTS = �dx2
dx1

(7)
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3. THE PRODUCTION FUNCTION

� Economic sense: the slope of the tangent to a point on an isoquant is
the rate at which x1 msut be substituted for x2 in order to maintain the
corresponding output level. Totally di¤erentiating the production function
leads to

dq = f1dx1 + f2dx2 = 0 (8)

where the last equality is satis�ed when q = q0: As a result, we obtain

RTS = �dx2
dx1

=
f1
f2

(9)
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3. THE PRODUCTION FUNCTION

that is, the RTS at a point equals the ratio of the MP of x1 to the MP x2 at
that point.

� Excercise 1: Derive the RTS of Cobb-Douglas function q = f(x1; x2) =
x�1 ; x

1��
2 :

� Elasticity of Substitition

Elasticity of Substitition � is a pure number that measures the rate at wihch
substitution takes palce. It is de�ned as the proportionate rate of change of
the inout ratio divided by the proportionate rate of change of the RTS

� =
@ ln(x2=x1)

@ ln(f1=f2)
=
f1=f2
x2=x1

d(x2=x1)

d(f1=f2)
(10)
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3. THE PRODUCTION FUNCTION

� Excercise 2: Prove that the class of production functions given by q =
Ax�1x

�
2 with �; � > 0 has unit elasiticity of substitution, that is, � = 1:

� Excercise 3: Derive the elasticity of substitution of production function
q = B[�x

��
1 + (1��)x��2 ]�1=� with � > �1 and explain the economic

meaning of parameter �: Hints: What is the relationship between � and
�; and what happens when � increases from �1 to in�nite?
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4. OPTIMIZING BEHAVIOR

4 Optimizing Behavior

The entrepreneur purchases x1 and x2 in perfectly competitive market at con-
strant unit prices. His total cost of prouction (C) is given by the linear equation

C = r1x1 + r2x2 + b (11)

� Constrained Output Maximization: the entrepreneur maximizes his output
subject to cost constraint that C � C0 :

Lagrangian = V = f(x1; x2) + �(C
0 � r1x1 � r2x2 � b) (12)
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4. OPTIMIZING BEHAVIOR

� First order condtions (FOC)

@V

@x1
= f1 � �r1 = 0 (13)

@V

@x2
= f2 � �r2 = 0 (14)

@V

@�
= C0 � r1x1 � r2x2 � b = 0 (15)

As a result, the ratio of the MPs of x1 and x2 must be equated with the ratio
of their prices

f1
f2
=
r1
r2

(16)
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4. OPTIMIZING BEHAVIOR

and the contribution to output of the last dollar expended upon each input
must equal �;

� =
f1
r1
=
f2
r2

(17)

Furthermore,

RTS =
r1
r2

(18)

The second-order conditions rquire that the relevant bordered Hessian deter-
minant be positive
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4. OPTIMIZING BEHAVIOR

�������
f11 f12 �r1
f21 f22 �r2
�r1 �r2 0

������� > 0 (19)

� Constrained Cost Minimization

Lagrangian = Z = r1x1 + r2x2 + �f(x1; x2) (20)
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4. OPTIMIZING BEHAVIOR

@Z

@x1
= r1 � �f1 = 0 (21)

@V

@x2
= r2 � �f2 = 0 (22)

@V

@�
= q0 � f(x1; x2) = 0 (23)

r1x1 + r2x2 + bSimilarly, we obtain

f1
f2
=
r1
r2
or
1

�
=
f1
r1
=
f2
r2
or RTS =

r1
r2

(24)

Now the second order condition requires taht the relevant bordered Hessian
determinant be negative
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4. OPTIMIZING BEHAVIOR

�������
��f11 ��f12 �f1
��f21 ��f22 �f2
�f1 �f2 0

������� < 0 (25)

� Excercise 4: Prove that the SOC (19) is equivalent to the SOC (25).

If the production function is regular strictly quasi-concave, every point of
tangency between an isoquant and an isocost line is the solution of both a
constrainted-maximum and costrained-minimum problem.

� Expansion Path, i.e., the locus of tangency points, is de�ned by an implicit
function of x1 and x2
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4. OPTIMIZING BEHAVIOR

g(x1; x2) = 0 (26)

� Excercise 5: Derive the expansion path of a Cobb-Douglas function.

� Pro�t maximization: Direct approach

Suppose that product price is exogenously given (what does it mean?), then
the pro�t maximization problem is

max �
x1;x2

pf(x1; x2)� (r1x1 + r2x2 + b) (27)

FOCs
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4. OPTIMIZING BEHAVIOR

@�

@x1
= pf1 � r1 = 0 (28)

@�

@x2
= pf2 � r2 = 0

f1
r1

=
f2
r2

Second order condtions require that the principal minors of the relevant Hessian
determinant alternate in sign:

@2�

@x21
= pf11 < 0;

@2�

@x22
= pf22 < 0 (29)
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4. OPTIMIZING BEHAVIOR

��������
@2�
@x21

@2�
@x1@x2

@2�
@x2@x1

@2�
@x22

�������� = p
2

����� f11 f12
f21 f22

����� > 0 (30)

SOC (29) and (30) reqire that the production function be strictly concave in the
neighborhood of a point at which the �rst-order are satisi�ed with x1; x2 � 0

if such a point exists.
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5. INPUT DEMANDS

5 Input Demands

� Input Demand Functions

The producer�s input demands are derived from the underlying demand for the
commodity which he produces. His input demand functions are obatined by
sovling his �rt-order conditons (28) for x1 and x2 as functions of r x1; x2 and
p:

Consider production function q = Ax�1x
�
2 with �; � > 0 and �+ � < 1.

� = pAx�1x
�
2 � (r1x1 + r2x2) (31)
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5. INPUT DEMANDS

The �rst order conditions are as follows:

@�

@x1
= p�Ax��11 x

�
2 � r1 = 0 (32)

@�

@x2
= p�Ax�1x

��1
2 � r2 = 0

� Excercise 6: Prove that the input demand functions in this case are as
follows:

x1 = (
�

r1
)(1��)=
(

�

r2
)�=
(Ap)1=
 (33)

x2 = (
�

r1
)�=
(

�

r2
)(1��)=
(Ap)1=
 (34)
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5. INPUT DEMANDS

where 
 = 1� �� �:

� Comparative statics analysis

How the input demands change with product price p and input prices r1 and
r2?

Di¤erentiating (32) totally and reagrranging terms,

pf11dx1 + pf12dx2 = �f1dp + dr1 (35)

pf21dx1 + pf22dx2 = �f2dp + dr2 (36)
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5. INPUT DEMANDS

Solving (35) for dx1 and dx2 by Cramer�s rule,

dx1 =
1

pH
[f22dr1 � f12dr2 + (f12f2 � f22f1) dp] (37)

dx2 =
1

pH
[�f21dr1 + f11dr2 + (f21f1 � f11f2) dp]

where

H =

����� f11 f12
f21 f22

����� > 0 (38)

Dividing both sides of the �rst equation of (37) by dr1 and letting dr2 = dp =
0,
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5. INPUT DEMANDS

@x1
@r1

=
f22
pH

< 0 (39)

Remark: Ceteris paribus, the rate of change of the producer�s purchase of x1
with respect to changes inits own price is always negative, and the producer�s
input demand curves are always downward sloping. Here there is only a substi-
tution e¤ect. There is no counterpart for the income e¤ect of the consumer in
the theory of the pro�t-maximizing producer because he does not face a cost
budget!

Dividing both sides of the �rst equation of (37) by dr2 and letting dr1 = dp =
0,
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5. INPUT DEMANDS

@x1
@r2

= �f12
pH

(40)

In usual cases, f12 > 0: Therefore, an increase in one input prie normally will
reduce the suage the other input

Dividing both sides of the �rst equation of (37) by dp and letting dr1 = dr2 =
0,

@x1
@p

= �(f12f2 � f22f1)
pH

(41)

� An application of the Le Chaterlier Principle
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5. INPUT DEMANDS

The pro�t function for the n-input case is

max� = f(x1; x2)�
nX
i=1

rixi (42)

The Le Chaterlier Principle states that

 
@x�i
@ri

!
0

�
 
@x�i
@ri

!
1

� ::: �
 
@x�i
@ri

!
n�1

; i = 1; :::; n (43)

where the subscript outside the parenthteses desginates that the number of
additional constgraints that have been appenned to the maximizaiton of (42).
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5. INPUT DEMANDS

The subscript 0 denotes unconstrained optimiazation, 1 denotes a case in which
(42) is maximized subject to one constraint, and so on. The constraints are
constructed so that x�i are optimal regardless of the number of constraints.

The abosolute value of demand reduction following a price increase cannot be
increased as additional cosntraints are indtroduced, and may be decreased.

Intuitive explantion: fij � 0:

� Excercise 7: Prove Le Chatelier Principle with n = 2.
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6. COST MINIMIZATION

6 Cost Minimization

Min r:x =
nX
i=1

rixi (44)

s.t. q � f(x1; x2; :::; xn) = f(x)

x � 0 (45)

Lagrangian = �r:x+ �(f(x)� q) (46)

First-order conditions
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6. COST MINIMIZATION

�fi(x))� ri � 0; (47)
(�fi(x))� ri):xi = 0 (48)

q = f(x) (49)

As a result

x�i = x�i (r1; r2; :::; rn; q) (50)
x� = x�(r; q) (51)

�(q; r) =
nX
i=1

rix
�
i + �(q � f(x�1; x�2; :::; x�n))| {z }

=0

(52)
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6. COST MINIMIZATION

� The properties of �(q; r)

1. �(q; r) is homeogeneous of degree one in r and nondecreasing in q.

Proof: If one or more input prices increase and those inputs are used at
positive levels, it is necessary to move to a higher iso-cost line to secure
any speci�ed output.

2. Concavity: economic sense!

Proof: We prove a special case with n = 2. For a speci�ed output let
(r01; r

0
2; x

0
1; x

0
2) and (r

1
1; r

1
2; x

1
1; x

1
2) denote two cost-minimizing solutions.

Let r2i = �r
0
i + (1� �)r1i (i = 1; 2): By cost minimization

r01x
2
1 + r

0
2x
2
2 � �(q; r01; r02) = r01x01 + r02x02 (53)
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6. COST MINIMIZATION

r11x
2
1 + r

1
2x
2
2 � �(q; r11; r12) = r11x11 + r12x12 (54)

Consequently, (53) times � plus (54) times � leads to

�(q; r21; r
2
2) � ��(q; r01; r02) + (1� �)�(q; r11; r12):

Q:E:D

3. If the sets fx � 0 : f(x) � qg are convex for every q, then Y =

f(�x; q) : r:x � �(r; q) for all r >> 0g

4. x�(:) is homogeneous of degree zero in r.
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6. COST MINIMIZATION

5. Shepherd Lemma: x�i =
@
@ri
�(q; r1; r2; :::)

Proof: By (52),

@�(:; ::)

@ri
= x�i (:) +

nX
k=1

(rk � �fk(x�1; x�2; :::; x�n))| {z }
=0

@x�k
@ri

(55)

= x�i (:)

6. If f(:) is homogeneous of degree one (i.e., exhibits constant returns to
scale), then �(:) and x�(:) are homogenous of degree one in q.

7. If f(:) is concave, then �(:) is a convex function ofof q. in particular,
marginal ocsts are nondecreasing in q.
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7. PROFIT MAXIMIZATION

7 Pro�t maximization

Price taking assumption, and p >> 0:

�(p) = max p:y s.t. y 2 Y or F (y) � 0 (56)

pl = �
@F (y�)
@yl

for l = 1; :::L (57)

or
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7. PROFIT MAXIMIZATION

p = �rF (y�) (58)

� The properties of cost function �(p)

� homogeneous of degree one in price

� convex: what is the economic sense?

� If Y is convex, then Y = fy 2 RL : p:y � �(p) for all p >> 0.

Remark: If Y is closed, convex and satis�es free disposal, then �(p) pro-
vides an alternative (dual) description of the technology.
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7. PROFIT MAXIMIZATION

� y(p) is homogenous of degree zero.

� Hotelling Lemma: suppose y(p) consists of a single point, then �(p) is
di¤erentiable at p and y(p) = r�(y�):

� If is a function di¤erentiable at p, then Dy(p) = D2�(p) is a symmetric
and positive semide�nite matrix with Dy(p)p = 0:

� Excercise 8: Prove the last property.

� Excercise 9: Prove (p � p0):(y � y0) � 0; where y or y0 is the pro�t-
maxizing quantity when price is p or p0:
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8. AGGREGATION

8 Aggregation

� Aggregation Proposition:

For all p >> 0, we have

(i) ��(p) =
P
j �j(p)

(ii) y�(p) =
P
j yj(p) (=

P
j yj : yj 2 yj(p) for every j).

Economic interpretation: To �nd the solution of the aggregate pro�t maxi-
mization problem for given prices p, it is enough to add the solutions of the
corresponding individual problems.
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