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Advanced Microeconomics 

Topic 1: Set, Topology, Real Analysis and Optimization

(with the complement of Associate Prof. Michael Li)
Readings: JR - Chapters 1 & 2, supplemented by DL - Appendix C

1.1
Introduction 

In this lecture, we will quickly go through some basic mathematical concepts and tools that will be used throughout the rest of the course. As this is a review session, the attention will be mainly on refreshing on the language, style and rigor of mathematical reasoning. In economic analysis, especially microeconomic analysis, mathematics is always treated as a tool, never the end. On the other hand, by integrating economics with rigorous mathematics, we will be able to develop the theoretical expositions in a sound and logical manner, which is why economics is also known as economic science. Not many other traditionally known as social science fields manage to pass this critical stage. But it is important to remember that as an economist, we must go beyond the normal mathematical treatment and the underlying economics and their policy implications are far more important and interesting. 

The plan of this lecture goes like this. First, we will review the basic set theory. We then move on to a bit of topology. After reviewing basic elements of real analysis, we will cover some key results in optimization. 

1.2
Basics of Set Theory 

1.2.1
Basic Concepts

· set: a collection of elements

· sets operations: union, intersection 

· real sets: 
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1.2.2
Convexity & Relations
Convex Set:
· A set S ( Rn is convex if 
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· Intuitively, a set is a convex set if and only if (iff) we can connect any two points in a straight line that lies entirely within the set. 

· Convex set has no holes, no breaks, no awkward curvatures on the boundaries; they are considered as “nice sets”.  

· The intersection of two convex sets remains convex. 

Relations

· For any two given sets, S and T, a binary relation R  between S and T is a collection of ordered pairs (s, t) with s (S and t (T. 

· It is clear that R  is a subset of S ( T: (s, t) ( R  or sR t.

Properties of Relations:

· Completeness 

· R ( S ( S is complete iff for all x and y (x ( y) in S, xR y or yR x.

· Reflexivity
· R ( S ( S is reflexive if for all x in S, xR x.

· Transitivity
· R ( S ( S is transitive if for all x, y, z in S, xR y and yR z implies xR z.

1.3
Topology

Topology attempts to study the fundamental properties of sets and mappings. Our discussion will be mainly on the real space Rn. 

· A real topological space is normally denoted as (Rn, d), where d is the metric defined on the real space. Intuitively speaking, d is a distance measure between two points in the real space. 

· Euclidean spaces are special real topological spaces associated with the Euclidean metric defined as follows: 
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1.3.1
Sets on a Real Topological Space 

(-Balls

· Open (-Ball for a point x0: for ( > 0, 
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· Closed (-Ball for a point x0: for ( > 0, 
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Open Sets

· S ( Rn is open set if, ( x ( S, ( ( > 0 such that (() B((x) ( S. 

· Properties of Open Sets: 

· The empty set and the whole set are open set

· Union of open sets is open; intersection of open sets is open too. 

· Any open set can be represented as a union of open balls: 
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Closed Sets

· S is a closed set if its complement, Sc, is an open set. 

· A point x (S is an interior point if  there is some (-ball centered at x that is entirely contained in S. The collection of all interior points of S is denoted by int S, known as the interior of S. 

· Properties of Closed Sets:
· The empty set and the whole set are closed;

· Union of any finite collection of closed sets is a closed set;

· Intersection of closed sets is a closed set. 

Compact Sets

· A set S is bounded if ( ( > 0 such that ((): S ( B((x) for some x ( S. 

· A set in Rn that is closed and bounded is called a compact set. 

1.3.2
Functions/Mappings on Rn 

· Let D ( Rm, f: D ( Rn. We say f is continuous at the point x0 (D if 

( ( > 0, ( ( > 0 ( 
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· Special Case:   D ( R,  f: D ( R. f is continuous at x0 (D if 



( ( > 0, ( ( > 0 ( 
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Properties of Continuous Mappings:

· Let D ( Rm, f: D ( Rn. Then 

· f is continuous ( for all open ball B ( Rn, f​--1(B) is open in D
( for all open set S ( Rn, f​--1(S) is open in D
· If S ( D is compact (closed and bounded), then its image f(S) is compact in Rn. 

1.3.3
Weierstrass Theorem & The Brouwer Fixed-Point Theorem

These two theorems, known as existence theorems, are very important in microeconomic theory.  “An existence theorem” specifies conditions that, if met, something exists. In the meantime, please keep in mind that the conditions in the existence theorems are normally sufficient conditions, meaning that if the required conditions are NOT met, it does not mean the nonexistence of something – it may still exist. The existence theorems say very little about exact location of this something. In other words, existence theorems are powerful tools for showing that something is there; but it is not sufficient in actually finding the equilibrium.  

Weierstrass Theorem – Existence of Extreme Values

· This is a fundamental result in optimization theory. 

· (Weierstrass Theorem) Let f: S ( R be a continuous real-valued mapping where S is a nonempty compact subset of Rn. Then a global maximum and a global minimum exist, namely, 
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The Brouwer Fixed-Point Theorem

Many profound questions about the fundamental consistency of microeconomic systems have been answered by reformulating the question as one of the existence of a fixed point. Examples include: 

· The view of a competitive economy as a system of interrelated markets is logically consistent with this setting;

· The well-known Minimax Theorem in game theory 

· (Brouwer Fixed-Point Theorem) Let S ( Rn be a nonempty compact and convex set. Let f: S ( S be continuous mapping. Then there exists at least one fixed point of f in S. That is, ( x* (S such that x* = f(x*). 

1.4
Real-Valued Functions 

· By definition, a real-valued function is a mapping from an arbitrary set D (domain set) of Rn to a subset R of the real line R (range set). ​​
· f: D ( R, with D ( Rn & R ( R. 
Increasing/Decreasing Functions:

· Increasing function: f(x0) ( f(x1) whenever x0 ( x1; 
· Strictly increasing function: f(x0) > f(x1) whenever x0 > x1;
· Strongly increasing function: f(x0) > f(x1) whenever x0 ( x1 and x0 ( x1   

· Similarly, we can define the three types of decreasing functions. 

Concavity of Real-Valued Functions

· Assumption  f: D ( R, with D ( Rn  is convex subset of Rn & R ( R. 
· f: D ( R is concave if for all x1, x2 ( D, 
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· Intuitively speaking, a function is concave iff for every pair of points on its graph, the chord between them lies on or below the graph. 

· f: D ( R is strict concave if for all x1( x2 in D, 
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· f: D ( R is quasiconcave if for all x1, x2 ( D, 
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· f: D ( R is strictly quasiconcave if for all x1( x2 in D, 


[image: image14.wmf])

1

  

,

0

(

)],

(

),

(

min[

)

)

1

(

(

2

1

2

1

Î

"

>

-

+

t

f

f

t

t

f

x

x

x

x


Convexity of Real-Valued Functions

· After the discussion of concave functions, we can take care of the convex functions by taking the negative of a concave function. 

· f: D ( R is convex if for all x1, x2 ( D, 
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· f: D ( R is strict convex if for all x1( x2 in D, 
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· f: D ( R is quasiconvex if for all x1, x2 ( D, 
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· f: D ( R is strictly quasiconvex if for all x1( x2 in D, 
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Properties of Concave/Convex Functions

· f: D ( R is concave ( the set of points beneath the graph, i.e., {(x, y)| x ( D, f(x) ( y} is a convex set. 

· f: D ( R is convex ( the set of points above the graph, i.e., {(x, y)| x ( D, f(x) ( y} is a convex set. 

· f: D ( R is quasiconcave (  superior sets, i.e., {x| x ( D, f(x) ( y} are convex for all y ( R. 

· f: D ( R is quasiconvex (  inferior sets, i.e., {x| x ( D, f(x) (y} are convex for all y ( R. 

· If f is concave/convex ( f is quasiconcave/quasiconvex;

· f (strictly) concave/quasiconcave ( -f (strictly) convex/quasiconvex.

· Let f be a real-valued function defined on a convex subset D of Rn with a nonempty interior on which f is a twice differentiable function, then the following statements are equivalent: 

· If f is concave. 

· The Hessian matrix H(x) is negative semidefinite for all x in D.

· For all x0 ( D, f(x) ( f(x0) + ( f(x0) (x – x0), ( x ( D. 

Homogeneous Functions

· A real-valued function f(x) is called homogeneous of degree k if 
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Properties of Homogeneous Functions:

· f is homogeneous of degree k, its partial derivatives are homogeneous of degree k – 1. 

· (Euler’s Theorem)  f(x) is homogeneous of degree k iff 
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1.5
Introduction to Optimization

· We will focus on real-valued functions only. 

Main Concepts of Optima

· Local minimum/maximum 
· Global minimum/maximum
· Interior maxima, boundary maxima
1.5.1
Unconstrained Optimization

First-Order (Necessary) Condition for Local Interior Optima 

· If the differentiable function f(x) reaches on a local interior maximum or minimum at x*, then x* solves the system of simultaneous equations: 

( f(x*) = 0.

Second-Order (Necessary) Condition for Local Interior Optima

Let f(x) be twice differentiable. 

1. If f(x) reaches a local interior maximum at x*, then H(x*) is negative semidefinite.

2. If f(x) reaches a local interior minimum at x*, then H(x*) is positive semidefinite.

Notes: 

· There is a simple method in checking whether a matrix is a negative (positive) semidefinte, which is to examine the signs of the determinants of the principle minors for the given matrix. 

Local-Global Optimization Theorem

· For a twice continuously differentiable real-valued concave function f on D, the following three statements are equivalent, where x* is an interior point of D: 

1. ( f(x*) = 0.

2. f achieves a local maximum at x*.

3. f achieves a global maximum at x*.

Strict Concavity/Convexity and Uniqueness of Global Optima

· If x* maximizes the strictly concave (convex) function f, then x* is the unique global maximizer (minimizer). 

1.5.2
Constrained Optimization

The Lagrangian Method

Consider the following optimization problem: 


[image: image21.wmf]m

j

g

f

j

n

,

,

1

,

0

)

(

  

subject to

     

)

(

max

L

=

=

Î

x

x

R

x


Note: 

· If the objective function f is real-valued and differentiable, and if the constraint set defined by the constraint equations is compact, then according to Weierstrass Theorem, optima of the objective function over the constraint set do exist. 

To solve this, we form the Lagrangian by multiplying each constraint equation gi by a different Lagrangian multiplier (j and adding them all to the objective function f. Namely, 
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Lagrange’s Theorem

Let f and gj be continuously differentiable real-valued function over some D ( Rn. Let x* be an interior point of D and suppose that x* is an optimum (maximum or minimum) of f subject to the constraints, gj(x*) = 0, j = 1, …, m. If the gradient vectors, ( gj(x*), j = 1, …, m, are linearly independent, then there exist m unique numbers (, j = 1,…, m, such that 
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Special Case: Graphical Interpretation

Consider the special case: max f(x1, x2) subject to  g(x1, x2) = 0. 

As our primary interest is to solve the problem for x1, x2, then the Lagrangian condition becomes: 
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which is what we commonly known as tangency condition.  To see this, define the level set as follows:

L(y0) = {(x1, x2) | f(x1, x2) = y0}.

and refer the diagram below. 

Second-Order Condition & Bordered Hessian 

For ease of discussion, let us focus the special case: max f(x1, x2) subject to  g(x1, x2) = 0.  Assume that there is a (curve) solution to the constraint, namely, x2 = x2(x1), such that 

g(x1, x2(x1)) = 0

Letting 

y = f(x1, x2(x1))

be the value of the objective function subject to the constraint. 

· As a function of single variable, the second-order (sufficient) condition for a maximum/minimum is that the second-order derivative of y with respect to x1 is negative (concave) or positive (convex).  

· This second-order derivative is associated with the determinant of the following matrix, known as bordered Hessian of the Lagrange function L:  
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· In particular, we have the following relationship: 
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where D is the determinant of the bordered Hessian, i.e., 
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· The above discussion can be extended to the general case.

Inequality Constraints

Let f(x) be continuously differentiable.  

· If x* maximizes f(x) subject to x ( 0, then x satisfies: 
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· If x* mimimizes f(x) subject to x ( 0, then x satisfies: 
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Kuhn-Tucker Conditions

(Kuhn-Tucker) Necessary Conditions for Optima of Real-Valued Functions Subject to Inequality Constraints:

Let f(x) and gj(x), j = 1,…,m, be continuously differentiable real-valued functions over some domain D (  Rn. Let x* be an interior point of D and suppose that x* is an optimum (maximum or maximum) of f subject to the constraints, gj(x) ( 0, j = 1,…,m. 

If the gradient vectors ( gj(x*) associated with all binding constraints are linearly independent, then there exists a unique vector (* such that (x*, (*) satisfies the Kuhn-Tucker conditions: 
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Furthermore, the vector (* is nonnegative if x* is a maximum, and nonpositive if it is a minimum. 

1.5.3
Value Functions

Consider the following parameterized optimization problem: 

max{x} f(x, a)  subject to  g(x, a) = 0 and x ( 0.

where x is a vector of choice variables, and a = (a1, …, am) is a vector of parameters that may enter the objective function, the constraint, or both. 

· Suppose that for each a, there is a unique solution denoted by x(a). 

· Define the value function M(a)  = f(x(a), a), which is the optimal value of the objective function associated with a. 

The Envelope Theorem

Consider the same optimization problem as identified above. For each a, let x(a). > 0 uniquely solve the problem. Assume that the objective function and the constraints are continuously differentiable in the parameters a. Let L(x,a,() be the problem's associated Lagrangian function and let (x(a), ((a)) solve the Kuhn-Tucker conditions. And let M(a) be the problem's associated maximum-value function. Then, the Envelope Theorem states that 
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Note: 

· The theorem says that the total effect on the optimized value of the objective function when a parameter changes (and so, presumably, the whole problem must be reoptimized) can be deduced simply by taking the partial of the problem's Lagarangian with respect to the parameter and then evaluating that derivative at the solution to the original problem's first-order Kuhn-Tucker conditions. 

· The theorem applies to cases having many constraints. 
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